Efficiently reducing models of chemically reacting flows is often challenging because their characteristic features such as sharp gradients in the flow fields and couplings over various time and length scales lead to dynamics that evolve in high-dimensional spaces. In this work, we show that online adaptive reduced models that construct nonlinear approximations by adapting low-dimensional subspaces over time can predict well latent dynamics with properties similar to those found in chemically reacting flows. The adaptation of the subspaces is driven by the online adaptive empirical interpolation method, which takes sparse residual evaluations of the full model to compute low-rank basis updates of the subspaces. Numerical experiments with a premixed flame model problem show that reduced models based on online adaptive empirical interpolation accurately predict flame dynamics far outside of the training regime and in regimes where traditional static reduced models, which keep reduced spaces fixed over time and so provide only linear approximations of latent dynamics, fail to make meaningful predictions.
The utilization of renewable energy technologies, particularly hydrogen, has seen a boom in interest and has spread throughout the world. Ethanol steam reformation is one of the primary methods capable of producing hydrogen efficiently and reliably. This paper provides an in-depth study of the reformulated system both theoretically and numerically, as well as a plan to explore the possibility of converting the system into its conservation form. Lastly, we offer an overview of several numerical approaches for solving the general first-order quasi-linear hyperbolic equation to the particular model for ethanol steam reforming (ESR). We conclude by presenting some results that would enable the usage of these ODE/PDE solvers to be used in non-linear model predictive control (NMPC) algorithms and discuss the limitations of our approach and directions for future work.
A biomechanical model often requires parameter estimation and selection in a known but complicated nonlinear function. Motivated by observing that data from a head-neck position tracking system, one of biomechanical models, show multiplicative time dependent errors, we develop a modified penalized weighted least squares estimator. The proposed method can be also applied to a model with non-zero mean time dependent additive errors. Asymptotic properties of the proposed estimator are investigated under mild conditions on a weight matrix and the error process. A simulation study demonstrates that the proposed estimation works well in both parameter estimation and selection with time dependent error. The analysis and comparison with an existing method for head-neck position tracking data show better performance of the proposed method in terms of the variance accounted for (VAF).
Compared to on-policy policy gradient techniques, off-policy model-free deep reinforcement learning (RL) that uses previously gathered data can improve sampling efficiency. However, off-policy learning becomes challenging when the discrepancy between the distributions of the policy of interest and the policies that collected the data increases. Although the well-studied importance sampling and off-policy policy gradient techniques were proposed to compensate for this discrepancy, they usually require a collection of long trajectories that increases the computational complexity and induce additional problems such as vanishing/exploding gradients or discarding many useful experiences. Moreover, their generalization to continuous action domains is strictly limited as they require action probabilities, which is unsuitable for deterministic policies. To overcome these limitations, we introduce a novel policy similarity measure to mitigate the effects of such discrepancy. Our method offers an adequate single-step off-policy correction without any probability estimates, and theoretical results show that it can achieve a contraction mapping with a fixed unique point, which allows "safe" off-policy learning. An extensive set of empirical results indicate that our algorithm substantially improves the state-of-the-art and attains higher returns in fewer steps than the competing methods by efficiently scheduling the learning rate in Q-learning and policy optimization.
Deep learning (DL) is becoming indispensable to contemporary stochastic analysis and finance; nevertheless, it is still unclear how to design a principled DL framework for approximating infinite-dimensional causal operators. This paper proposes a "geometry-aware" solution to this open problem by introducing a DL model-design framework that takes a suitable infinite-dimensional linear metric spaces as inputs and returns a universal sequential DL models adapted to these linear geometries: we call these models Causal Neural Operators (CNO). Our main result states that the models produced by our framework can uniformly approximate on compact sets and across arbitrarily finite-time horizons H\"older or smooth trace class operators which causally map sequences between given linear metric spaces. Consequentially, we deduce that a single CNO can efficiently approximate the solution operator to a broad range of SDEs, thus allowing us to simultaneously approximate predictions from families of SDE models, which is vital to computational robust finance. We deduce that the CNO can approximate the solution operator to most stochastic filtering problems, implying that a single CNO can simultaneously filter a family of partially observed stochastic volatility models.
We propose an efficient way of solving optimal control problems for rigid-body systems on the basis of inverse dynamics and the multiple-shooting method. We treat all variables, including the state, acceleration, and control input torques, as optimization variables and treat the inverse dynamics as an equality constraint. We eliminate the update of the control input torques from the linear equation of Newton's method by applying condensing for inverse dynamics. The size of the resultant linear equation is the same as that of the multiple-shooting method based on forward dynamics except for the variables related to the passive joints and contacts. Compared with the conventional methods based on forward dynamics, the proposed method reduces the computational cost of the dynamics and their sensitivities by utilizing the recursive Newton-Euler algorithm (RNEA) and its partial derivatives. In addition, it increases the sparsity of the Hessian of the Karush-Kuhn-Tucker conditions, which reduces the computational cost, e.g., of Riccati recursion. Numerical experiments show that the proposed method outperforms state-of-the-art implementations of differential dynamic programming based on forward dynamics in terms of computational time and numerical robustness.
In high-dimensional classification problems, a commonly used approach is to first project the high-dimensional features into a lower dimensional space, and base the classification on the resulting lower dimensional projections. In this paper, we formulate a latent-variable model with a hidden low-dimensional structure to justify this two-step procedure and to guide which projection to choose. We propose a computationally efficient classifier that takes certain principal components (PCs) of the observed features as projections, with the number of retained PCs selected in a data-driven way. A general theory is established for analyzing such two-step classifiers based on any projections. We derive explicit rates of convergence of the excess risk of the proposed PC-based classifier. The obtained rates are further shown to be optimal up to logarithmic factors in the minimax sense. Our theory allows the lower-dimension to grow with the sample size and is also valid even when the feature dimension (greatly) exceeds the sample size. Extensive simulations corroborate our theoretical findings. The proposed method also performs favorably relative to other existing discriminant methods on three real data examples.
Model-based control requires an accurate model of the system dynamics for precisely and safely controlling the robot in complex and dynamic environments. Moreover, in presence of variations in the operating conditions, the model should be continuously refined to compensate for dynamics changes. In this paper, we propose a self-supervised learning approach to actively model robot discrete-time dynamics. We combine offline learning from past experience and online learning from present robot interaction with the unknown environment. These two ingredients enable highly sample-efficient and adaptive learning for accurate inference of the model dynamics in real-time even in operating regimes significantly different from the training distribution. Moreover, we design an uncertainty-aware model predictive controller that is conditioned to the aleatoric (data) uncertainty of the learned dynamics. The controller actively selects the optimal control actions that (i) optimize the control performance and (ii) boost the online learning sample efficiency. We apply the proposed method to a quadrotor system in multiple challenging real-world experiments. Our approach exhibits high flexibility and generalization capabilities by consistently adapting to unseen flight conditions, while it significantly outperforms classical and adaptive control baselines.
Digital sensors can lead to noisy results under many circumstances. To be able to remove the undesired noise from images, proper noise modeling and an accurate noise parameter estimation is crucial. In this project, we use a Poisson-Gaussian noise model for the raw-images captured by the sensor, as it fits the physical characteristics of the sensor closely. Moreover, we limit ourselves to the case where observed (noisy), and ground-truth (noise-free) image pairs are available. Using such pairs is beneficial for the noise estimation and is not widely studied in literature. Based on this model, we derive the theoretical maximum likelihood solution, discuss its practical implementation and optimization. Further, we propose two algorithms based on variance and cumulant statistics. Finally, we compare the results of our methods with two different approaches, a CNN we trained ourselves, and another one taken from literature. The comparison between all these methods shows that our algorithms outperform the others in terms of MSE and have good additional properties.
A fundamental task in science is to design experiments that yield valuable insights about the system under study. Mathematically, these insights can be represented as a utility or risk function that shapes the value of conducting each experiment. We present PDBAL, a targeted active learning method that adaptively designs experiments to maximize scientific utility. PDBAL takes a user-specified risk function and combines it with a probabilistic model of the experimental outcomes to choose designs that rapidly converge on a high-utility model. We prove theoretical bounds on the label complexity of PDBAL and provide fast closed-form solutions for designing experiments with common exponential family likelihoods. In simulation studies, PDBAL consistently outperforms standard untargeted approaches that focus on maximizing expected information gain over the design space. Finally, we demonstrate the scientific potential of PDBAL through a study on a large cancer drug screen dataset where PDBAL quickly recovers the most efficacious drugs with a small fraction of the total number of experiments.
In domains where sample sizes are limited, efficient learning algorithms are critical. Learning using privileged information (LuPI) offers increased sample efficiency by allowing prediction models access to auxiliary information at training time which is unavailable when the models are used. In recent work, it was shown that for prediction in linear-Gaussian dynamical systems, a LuPI learner with access to intermediate time series data is never worse and often better in expectation than any unbiased classical learner. We provide new insights into this analysis and generalize it to nonlinear prediction tasks in latent dynamical systems, extending theoretical guarantees to the case where the map connecting latent variables and observations is known up to a linear transform. In addition, we propose algorithms based on random features and representation learning for the case when this map is unknown. A suite of empirical results confirm theoretical findings and show the potential of using privileged time-series information in nonlinear prediction.