亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models have recently attracted significant attention due to their impressive performance on a variety of tasks. ChatGPT developed by OpenAI is one such implementation of a large, pre-trained language model that has gained immense popularity among early adopters, where certain users go to the extent of characterizing it as a disruptive technology in many domains. Understanding such early adopters' sentiments is important because it can provide insights into the potential success or failure of the technology, as well as its strengths and weaknesses. In this paper, we conduct a mixed-method study using 10,732 tweets from early ChatGPT users. We first use topic modelling to identify the main topics and then perform an in-depth qualitative sentiment analysis of each topic. Our results show that the majority of the early adopters have expressed overwhelmingly positive sentiments related to topics such as Disruptions to software development, Entertainment and exercising creativity. Only a limited percentage of users expressed concerns about issues such as the potential for misuse of ChatGPT, especially regarding topics such as Impact on educational aspects. We discuss these findings by providing specific examples for each topic and then detail implications related to addressing these concerns for both researchers and users.

相關內容

ChatGPT(全名:Chat Generative Pre-trained Transformer),美國OpenAI 研(yan)發(fa)的(de)聊(liao)天(tian)機器人(ren)程(cheng)序 [1] ,于2022年(nian)11月30日發(fa)布  。ChatGPT是人(ren)工智能技術(shu)驅動(dong)的(de)自然語(yu)言(yan)(yan)處(chu)理工具(ju),它能夠(gou)通過學(xue)習和理解人(ren)類的(de)語(yu)言(yan)(yan)來進行對話,還能根據聊(liao)天(tian)的(de)上(shang)下文(wen)進行互動(dong),真正像(xiang)人(ren)類一樣來聊(liao)天(tian)交流,甚至能完成撰寫郵(you)件(jian)、視頻腳(jiao)本、文(wen)案、翻譯、代碼,寫論(lun)文(wen)任務(wu)。 [1] //openai.com/blog/chatgpt/

Social media, as a means for computer-mediated communication, has been extensively used to study the sentiment expressed by users around events or topics. There is however a gap in the longitudinal study of how sentiment evolved in social media over the years. To fill this gap, we develop TM-Senti, a new large-scale, distantly supervised Twitter sentiment dataset with over 184 million tweets and covering a time period of over seven years. We describe and assess our methodology to put together a large-scale, emoticon- and emoji-based labelled sentiment analysis dataset, along with an analysis of the resulting dataset. Our analysis highlights interesting temporal changes, among others in the increasing use of emojis over emoticons. We publicly release the dataset for further research in tasks including sentiment analysis and text classification of tweets. The dataset can be fully rehydrated including tweet metadata and without missing tweets thanks to the archive of tweets publicly available on the Internet Archive, which the dataset is based on.

In this paper, we describe the research on how perceptual load can affect programming performance in people with symptoms of Attention Deficit / Hyperactivity Disorder (ADHD). We asked developers to complete the Barkley Deficits in Executive Functioning Scale, which indicates the presence and severity levels of ADHD symptoms. After that, participants solved mentally active programming tasks (coding) and monotonous ones (debugging) in the integrated development environment in high perceptual load modes (visually noisy) and low perceptual load modes (visually clear). The development environment was augmented with the plugin we wrote to track efficiency metrics, i.e. time, speed, and activity. We found that the perceptual load does affect programmers' efficiency. For mentally active tasks, the time of inserting the first character was shorter and the overall speed was higher in the low perceptual load mode. For monotonous tasks, the total time for the solution was less for the low perceptual load mode. Also, we found that the effect of perceptual load on programmers' efficiency differs between those with and without ADHD symptoms. This effect has a specificity: depending on efficiency measures and ADHD symptoms, one or another level of perceptual load might be beneficial. Our findings support the idea of behavioral assessment of users for providing appropriate accommodation for the workforce with special needs.

A major objective of Brain-Computer interfaces (BCI) is to restore communication and control in patients with severe motor impairments, like people with Locked-in syndrome. These patients are left only with limited eye and eyelid movements. However, they do not benefit from efficient BCI solutions, yet. Different signals can be used as commands for non-invasive BCI: mu and beta rhythm desynchronization, evoked potentials and slow cortical potentials. Whatever the signal, clinical studies show a dramatic loss of performance in severely impaired patients compared to healthy subjects. Interestingly, the control principle is always the same, namely the replacement of an impossible (overt) movement by a (covert) attentional command. Drawing from the premotor theory of attention, from neuroimaging findings about the functional anatomy of spatial attention, from clinical observations and from recent computational accounts of attention for both action and perception, we explore the hypothesis that these patients undergo negative plasticity that extends their impairment from overt to covert attentional processes.

Exploiting social media to spread hate has tremendously increased over the years. Lately, multi-modal hateful content such as memes has drawn relatively more traction than uni-modal content. Moreover, the availability of implicit content payloads makes them fairly challenging to be detected by existing hateful meme detection systems. In this paper, we present a use case study to analyze such systems' vulnerabilities against external adversarial attacks. We find that even very simple perturbations in uni-modal and multi-modal settings performed by humans with little knowledge about the model can make the existing detection models highly vulnerable. Empirically, we find a noticeable performance drop of as high as 10% in the macro-F1 score for certain attacks. As a remedy, we attempt to boost the model's robustness using contrastive learning as well as an adversarial training-based method - VILLA. Using an ensemble of the above two approaches, in two of our high resolution datasets, we are able to (re)gain back the performance to a large extent for certain attacks. We believe that ours is a first step toward addressing this crucial problem in an adversarial setting and would inspire more such investigations in the future.

With the advance of language models, privacy protection is receiving more attention. Training data extraction is therefore of great importance, as it can serve as a potential tool to assess privacy leakage. However, due to the difficulty of this task, most of the existing methods are proof-of-concept and still not effective enough. In this paper, we investigate and benchmark tricks for improving training data extraction using a publicly available dataset. Because most existing extraction methods use a pipeline of generating-then-ranking, i.e., generating text candidates as potential training data and then ranking them based on specific criteria, our research focuses on the tricks for both text generation (e.g., sampling strategy) and text ranking (e.g., token-level criteria). The experimental results show that several previously overlooked tricks can be crucial to the success of training data extraction. Based on the GPT-Neo 1.3B evaluation results, our proposed tricks outperform the baseline by a large margin in most cases, providing a much stronger baseline for future research.

The emergence of artificial intelligence has incited a paradigm shift across the spectrum of human endeavors, with ChatGPT serving as a catalyst for the transformation of various established domains, including but not limited to education, journalism, security, and ethics. In the post-pandemic era, the widespread adoption of remote work has prompted the educational sector to reassess conventional pedagogical methods. This paper is to scrutinize the underlying psychological principles of ChatGPT, delve into the factors that captivate user attention, and implicate its ramifications on the future of learning. The ultimate objective of this study is to instigate a scholarly discourse on the interplay between technological advancements in education and the evolution of human learning patterns, raising the question of whether technology is driving human evolution or vice versa.

Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.

Machine learning plays a role in many deployed decision systems, often in ways that are difficult or impossible to understand by human stakeholders. Explaining, in a human-understandable way, the relationship between the input and output of machine learning models is essential to the development of trustworthy machine-learning-based systems. A burgeoning body of research seeks to define the goals and methods of explainability in machine learning. In this paper, we seek to review and categorize research on counterfactual explanations, a specific class of explanation that provides a link between what could have happened had input to a model been changed in a particular way. Modern approaches to counterfactual explainability in machine learning draw connections to the established legal doctrine in many countries, making them appealing to fielded systems in high-impact areas such as finance and healthcare. Thus, we design a rubric with desirable properties of counterfactual explanation algorithms and comprehensively evaluate all currently-proposed algorithms against that rubric. Our rubric provides easy comparison and comprehension of the advantages and disadvantages of different approaches and serves as an introduction to major research themes in this field. We also identify gaps and discuss promising research directions in the space of counterfactual explainability.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司