亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Satellites play a vital role in remote communication where traditional communication mediums struggle to provide benefits over associated costs and efficiency. In recent years, satellite communication has achieved utter interest in the industry due to the achievement of high data rates through the massive deployment of LEO satellites. Because of the complex diversity in types of satellites, communication methodologies, technological obstacles, environmental limitations, elements in the entire ecosystem, massive financial impact, geopolitical conflict and domination, easier access to satellite communications, and various other reasons, the threat vectors are rising in the threat landscape. To achieve resilience against those, only technological solutions are not enough. An effective approach will be through security standards. However, there is a considerable gap in the industry regarding a generic security standard framework for satellite communication and space data systems. A few countries and space agencies have their own standard framework and private policies. However, many of those are either private, serve the specific requirements of specific missions, or have not been updated for a long time. This project report will focus on identifying, categorizing, comparing, and assessing elements, threat landscape, enterprise security architectures, and available public standards of satellite communication and space data systems. After that, it will utilize the knowledge to propose an updated standard framework for secure satellite communications and space data systems.

相關內容

Several sensing techniques have been proposed for silent speech recognition (SSR); however, many of these methods require invasive processes or sensor attachment to the skin using adhesive tape or glue, rendering them unsuitable for frequent use in daily life. By contrast, impulse radio ultra-wideband (IR-UWB) radar can operate without physical contact with users' articulators and related body parts, offering several advantages for SSR. These advantages include high range resolution, high penetrability, low power consumption, robustness to external light or sound interference, and the ability to be embedded in space-constrained handheld devices. This study demonstrated IR-UWB radar-based contactless SSR using four types of speech stimuli (vowels, consonants, words, and phrases). To achieve this, a novel speech feature extraction algorithm specifically designed for IR-UWB radar-based SSR is proposed. Each speech stimulus is recognized by applying a classification algorithm to the extracted speech features. Two different algorithms, multidimensional dynamic time warping (MD-DTW) and deep neural network-hidden Markov model (DNN-HMM), were compared for the classification task. Additionally, a favorable radar antenna position, either in front of the user's lips or below the user's chin, was determined to achieve higher recognition accuracy. Experimental results demonstrated the efficacy of the proposed speech feature extraction algorithm combined with DNN-HMM for classifying vowels, consonants, words, and phrases. Notably, this study represents the first demonstration of phoneme-level SSR using contactless radar.

Although there are currently many benchmarks available for evaluating the long context understanding and reasoning capability of large language models, with the expansion of the context window in these models, the existing long context benchmarks are no longer sufficient for evaluating the long context understanding and reasoning capability of large language models. In this paper, we have developed a fresh long context evaluation benchmark, which we name it Marathon in the form of multiple choice questions, inspired by benchmarks such as MMLU, for assessing the long context comprehension capability of large language models quickly, accurately, and objectively. We have evaluated several of the latest and most popular large language models, as well as three recent and effective long context optimization methods, on our benchmark. This showcases the long context reasoning and comprehension capabilities of these large language models and validates the effectiveness of these optimization methods. Marathon is available at //huggingface.co/datasets/Lemoncoke/Marathon.

Pilot studies are an essential cornerstone of the design of crowdsourcing campaigns, yet they are often only mentioned in passing in the scholarly literature. A lack of details surrounding pilot studies in crowdsourcing research hinders the replication of studies and the reproduction of findings, stalling potential scientific advances. We conducted a systematic literature review on the current state of pilot study reporting at the intersection of crowdsourcing and HCI research. Our review of ten years of literature included 171 articles published in the proceedings of the Conference on Human Computation and Crowdsourcing (AAAI HCOMP) and the ACM Digital Library. We found that pilot studies in crowdsourcing research (i.e., crowd pilot studies) are often under-reported in the literature. Important details, such as the number of workers and rewards to workers, are often not reported. On the basis of our findings, we reflect on the current state of practice and formulate a set of best practice guidelines for reporting crowd pilot studies in crowdsourcing research. We also provide implications for the design of crowdsourcing platforms and make practical suggestions for supporting crowd pilot study reporting.

The past decade has witnessed the rapid development of geospatial artificial intelligence (GeoAI) primarily due to the ground-breaking achievements in deep learning and machine learning. A growing number of scholars from cartography have demonstrated successfully that GeoAI can accelerate previously complex cartographic design tasks and even enable cartographic creativity in new ways. Despite the promise of GeoAI, researchers and practitioners have growing concerns about the ethical issues of GeoAI for cartography. In this paper, we conducted a systematic content analysis and narrative synthesis of research studies integrating GeoAI and cartography to summarize current research and development trends regarding the usage of GeoAI for cartographic design. Based on this review and synthesis, we first identify dimensions of GeoAI methods for cartography such as data sources, data formats, map evaluations, and six contemporary GeoAI models, each of which serves a variety of cartographic tasks. These models include decision trees, knowledge graph and semantic web technologies, deep convolutional neural networks, generative adversarial networks, graph neural networks, and reinforcement learning. Further, we summarize seven cartographic design applications where GeoAI have been effectively employed: generalization, symbolization, typography, map reading, map interpretation, map analysis, and map production. We also raise five potential ethical challenges that need to be addressed in the integration of GeoAI for cartography: commodification, responsibility, privacy, bias, and (together) transparency, explainability, and provenance. We conclude by identifying four potential research directions for future cartographic research with GeoAI: GeoAI-enabled active cartographic symbolism, human-in-the-loop GeoAI for cartography, GeoAI-based mapping-as-a-service, and generative GeoAI for cartography.

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

Temporal characteristics are prominently evident in a substantial volume of knowledge, which underscores the pivotal role of Temporal Knowledge Graphs (TKGs) in both academia and industry. However, TKGs often suffer from incompleteness for three main reasons: the continuous emergence of new knowledge, the weakness of the algorithm for extracting structured information from unstructured data, and the lack of information in the source dataset. Thus, the task of Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention, aiming to predict missing items based on the available information. In this paper, we provide a comprehensive review of TKGC methods and their details. Specifically, this paper mainly consists of three components, namely, 1)Background, which covers the preliminaries of TKGC methods, loss functions required for training, as well as the dataset and evaluation protocol; 2)Interpolation, that estimates and predicts the missing elements or set of elements through the relevant available information. It further categorizes related TKGC methods based on how to process temporal information; 3)Extrapolation, which typically focuses on continuous TKGs and predicts future events, and then classifies all extrapolation methods based on the algorithms they utilize. We further pinpoint the challenges and discuss future research directions of TKGC.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.

北京阿比特科技有限公司