亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper is concerned with superconvergence properties of the direct discontinuous Galerkin (DDG) method for two-dimensional nonlinear convection-diffusion equations. By using the idea of correction function, we prove that, for any piecewise tensor-product polynomials of degree $k\geq 2$, the DDG solution is superconvergent at nodes and Lobatto points, with an order of ${\cal O}(h^{2k})$ and ${\cal O}(h^{k+2})$, respectively. Moreover, superconvergence properties for the derivative approximation are also studied and the superconvergence points are identified at Gauss points, with an order of ${\cal O}(h^{k+1})$. Numerical experiments are presented to confirm the sharpness of all the theoretical findings.

相關內容

In this article, we propose a higher order approximation to Caputo fractional (C-F) derivative using graded mesh and standard central difference approximation for space derivatives, in order to obtain the approximate solution of time fractional partial differential equations (TFPDE). The proposed approximation for C-F derivative tackles the singularity at origin effectively and is easily applicable to diverse problems. The stability analysis and truncation error bounds of the proposed scheme are discussed, along with this, analyzed the required regularity of the solution. Few numerical examples are presented to support the theory.

This paper presents and analyzes a discontinuous Galerkin method for the incompressible three-phase flow problem in porous media. We use a first order time extrapolation which allows us to solve the equations implicitly and sequentially. We show that the discrete problem is well-posed, and obtain a priori error estimates. Our numerical results validate the theoretical results, i.e. the algorithm converges with first order.

The nonlinear eigen-problem $ Ax+F(x)=\lambda x$ is studied where $A$ is an $n\times n$ irreducible Stieltjes matrix. Under certain conditions, this problem has a unique positive solution. We show that, starting from a multiple of the positive eigenvector of $A$, the Newton-like iteration for this problem converges monotonically. Numerical results illustrate the effectiveness of this Newton-like method.

In this work, we determine the full expression for the global truncation error of hyperbolic partial differential equations (PDEs). In particular, we use theoretical analysis and symbolic algebra to find exact expressions for the coefficients of the generic global truncation error. Our analysis is valid for any hyperbolic PDE, be it linear or non-linear, and employing finite difference, finite volume, or finite element discretization in space, and advanced in time with a predictor-corrector, multistep, or a deferred correction method, belonging to the Method of Lines. Furthermore, we discuss the practical implications of this analysis. If we employ a stable numerical scheme and the orders of accuracy of the global solution error and the global truncation error agree, we make the following asymptotic observations: (a) the order of convergence at constant ratio of $\Delta t$ to $\Delta x$ is governed by the minimum of the orders of the spatial and temporal discretizations, and (b) convergence cannot even be guaranteed under only spatial or temporal refinement. An implication of (a) is that it is impractical to invest in a time-stepping method of order higher than the spatial discretization. In addition to (b), we demonstrate that under certain circumstances, the error can even monotonically increase with refinement only in space or only in time, and explain why this phenomenon occurs. To verify our theoretical findings, we conduct convergence studies of linear and non-linear advection equations using finite difference and finite volume spatial discretizations, and predictor-corrector and multistep time-stepping methods. Finally, we study the effect of slope limiters and monotonicity-preserving strategies on the order of accuracy.

This paper is concerned with the efficient spectral solutions for weakly singular nonlocal diffusion equations with Dirichlet-type volume constraints. This type of equation contains an integral operator which typically has a singularity at the midpoint of the integral domain, and the approximation of such the integral operator is one of the essential difficulties in solving the nonlocal equations. To overcome this problem, two-sided Jacobi spectral quadrature rules are proposed to develop a Jacobi spectral collocation method for the nonlocal diffusion equations. Rigorous convergence analysis of the proposed method is presented in $L^\infty$ norms, and we further prove that the Jacobi collocation solution converges to its corresponding local limit as nonlocal interactions vanish. Numerical examples are given to verify the theoretical results.

We introduce a new hybridized discontinuous Galerkin method for the incompressible magnetohydrodynamics equations. If particular velocity, pressure, magnetic field, and magnetic pressure spaces are employed for both element and trace solution fields, we arrive at an energy stable method which returns pointwise divergence-free velocity fields and magnetic fields and properly balances linear momentum. We discretize in time using a second-order-in-time generalized-$\alpha$ method, and we present a block iterative method for solving the resulting nonlinear system of equations at each time step. We numerically examine the effectiveness of our method using a manufactured solution and observe our method yields optimal convergence rates in the $L_2$ norm for the velocity field, pressure field, magnetic field, and magnetic pressure field. We further find our method is pressure robust. We then apply our method to a selection of benchmark problems and numerically confirm our method is energy stable.

The aim of this paper is to study the recovery of a spatially dependent potential in a (sub)diffusion equation from overposed final time data. We construct a monotone operator one of whose fixed points is the unknown potential. The uniqueness of the identification is theoretically verified by using the monotonicity of the operator and a fixed point argument. Moreover, we show a conditional stability in Hilbert spaces under some suitable conditions on the problem data. Next, a completely discrete scheme is developed, by using Galerkin finite element method in space and finite difference method in time, and then a fixed point iteration is applied to reconstruct the potential. We prove the linear convergence of the iterative algorithm by the contraction mapping theorem, and present a thorough error analysis for the reconstructed potential. Our derived \textsl{a priori} error estimate provides a guideline to choose discretization parameters according to the noise level. The analysis relies heavily on some suitable nonstandard error estimates for the direct problem as well as the aforementioned conditional stability. Numerical experiments are provided to illustrate and complement our theoretical analysis.

In their article "Coupling at a distance HDG and BEM", Cockburn, Sayas and Solano proposed an iterative coupling of the hybridizable discontinuous Galerkin method (HDG) and the boundary element method (BEM) to solve an exterior Dirichlet problem. The novelty of the numerical scheme consisted of using a computational domain for the HDG discretization whose boundary did not coincide with the coupling interface. In their article, the authors provided extensive numerical evidence for convergence, but the proof of convergence and the error analysis remained elusive at that time. In this article we fill the gap by proving the convergence of a relaxation of the algorithm and providing a priori error estimates for the numerical solution.

We investigate the quality of space approximation of a class of stochastic integral equations of convolution type with Gaussian noise. Such equations arise, for example, when considering mild solutions of stochastic fractional order partial differential equations but also when considering mild solutions of classical stochastic partial differential equations. The key requirement for the equations is a smoothing property of the deterministic evolution operator which is typical in parabolic type problems. We show that if one has access to nonsmooth data estimates for the deterministic error operator together with its derivative of a space discretization procedure, then one obtains error estimates in pathwise H\"older norms with rates that can be read off the deterministic error rates. We illustrate the main result by considering a class of stochastic fractional order partial differential equations and space approximations performed by spectral Galerkin methods and finite elements. We also improve an existing result on the stochastic heat equation.

In this paper we analyze the Schwarz alternating method for unconstrained elliptic optimal control problems. We discuss the convergence properties of the method in the continuous case first and then apply the arguments to the finite difference discretization case. In both cases, we prove that the Schwarz alternating method is convergent if its counterpart for an elliptic equation is convergent. Meanwhile, the convergence rate of the method for the elliptic equation under the maximum norm also gives a uniform upper bound (with respect to the regularization parameter $\alpha$) of the convergence rate of the method for the optimal control problem under the maximum norm of proper error merit functions in the continuous case or vectors in the discrete case. Our numerical results corroborate our theoretical results and show that with $\alpha$ decreasing to zero, the method will converge faster. We also give some exposition of this phenomenon.

北京阿比特科技有限公司