亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we introduce our method of outdoor scene relighting for Neural Radiance Fields (NeRF) named Sun-aligned Relighting TensoRF (SR-TensoRF). SR-TensoRF offers a lightweight and rapid pipeline aligned with the sun, thereby achieving a simplified workflow that eliminates the need for environment maps. Our sun-alignment strategy is motivated by the insight that shadows, unlike viewpoint-dependent albedo, are determined by light direction. We directly use the sun direction as an input during shadow generation, simplifying the requirements of the inference process significantly. Moreover, SR-TensoRF leverages the training efficiency of TensoRF by incorporating our proposed cubemap concept, resulting in notable acceleration in both training and rendering processes compared to existing methods.

相關內容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存儲技術會議。 Publisher:USENIX。 SIT:

Nowadays, we are witnessing an increasing adoption of Artificial Intelligence (AI) to develop techniques aimed at improving the reliability, effectiveness, and overall quality of software systems. Deep reinforcement learning (DRL) has recently been successfully used for automation in complex tasks such as game testing and solving the job-shop scheduling problem. However, these specialized DRL agents, trained from scratch on specific tasks, suffer from a lack of generalizability to other tasks and they need substantial time to be developed and re-trained effectively. Recently, DRL researchers have begun to develop generalist agents, able to learn a policy from various environments and capable of achieving performances similar to or better than specialist agents in new tasks. In the Natural Language Processing or Computer Vision domain, these generalist agents are showing promising adaptation capabilities to never-before-seen tasks after a light fine-tuning phase and achieving high performance. This paper investigates the potential of generalist agents for solving SE tasks. Specifically, we conduct an empirical study aimed at assessing the performance of two generalist agents on two important SE tasks: the detection of bugs in games (for two games) and the minimization of makespan in a scheduling task, to solve the job-shop scheduling problem (for two instances). Our results show that the generalist agents outperform the specialist agents with very little effort for fine-tuning, achieving a 20% reduction of the makespan over specialized agent performance on task-based scheduling. In the context of game testing, some generalist agent configurations detect 85% more bugs than the specialist agents. Building on our analysis, we provide recommendations for researchers and practitioners looking to select generalist agents for SE tasks, to ensure that they perform effectively.

In this paper, we present our finding that prepending a Task-Agnostic Prefix Prompt (TAPP) to the input improves the instruction-following ability of various Large Language Models (LLMs) during inference. TAPP is different from canonical prompts for LLMs in that it is a fixed prompt prepended to the beginning of every input regardless of the target task for zero-shot generalization. We observe that both base LLMs (i.e. not fine-tuned to follow instructions) and instruction-tuned models benefit from TAPP, resulting in 34.58% and 12.26% improvement on average, respectively. This implies that the instruction-following ability of LLMs can be improved during inference time with a fixed prompt constructed with simple heuristics. We hypothesize that TAPP assists language models to better estimate the output distribution by focusing more on the instruction of the target task during inference. In other words, such ability does not seem to be sufficiently activated in not only base LLMs but also many instruction-fine-tuned LLMs. All experiments are reproducible from //github.com/seonghyeonye/TAPP.

In this paper, we tackle the new task of video-based Activated Muscle Group Estimation (AMGE) aiming at identifying active muscle regions during physical activity in the wild. To this intent, we provide the MuscleMap dataset featuring >15K video clips with 135 different activities and 20 labeled muscle groups. This dataset opens the vistas to multiple video-based applications in sports and rehabilitation medicine under flexible environment constraints. The proposed MuscleMap dataset is constructed with YouTube videos, specifically targeting High-Intensity Interval Training (HIIT) physical exercise in the wild. To make the AMGE model applicable in real-life situations, it is crucial to ensure that the model can generalize well to numerous types of physical activities not present during training and involving new combinations of activated muscles. To achieve this, our benchmark also covers an evaluation setting where the model is exposed to activity types excluded from the training set. Our experiments reveal that the generalizability of existing architectures adapted for the AMGE task remains a challenge. Therefore, we also propose a new approach, TransM3E, which employs a multi-modality feature fusion mechanism between both the video transformer model and the skeleton-based graph convolution model with novel cross-modal knowledge distillation executed on multi-classification tokens. The proposed method surpasses all popular video classification models when dealing with both, previously seen and new types of physical activities. The contributed dataset and code are made publicly available at //github.com/KPeng9510/MuscleMap.

Through iterative, cross-disciplinary discussions, we define and propose next-steps for Human-centered Generative AI (HGAI). We contribute a comprehensive research agenda that lays out future directions of Generative AI spanning three levels: aligning with human values; assimilating human intents; and augmenting human abilities. By identifying these next-steps, we intend to draw interdisciplinary research teams to pursue a coherent set of emergent ideas in HGAI, focusing on their interested topics while maintaining a coherent big picture of the future work landscape.

For parameter estimation of continuous and discrete distributions, we propose a generalization of the method of moments (MM), where Stein identities are utilized for improved estimation performance. The construction of these Stein-type MM-estimators makes use of a weight function as implied by an appropriate form of the Stein identity. Our general approach as well as potential benefits thereof are first illustrated by the simple example of the exponential distribution. Afterward, we investigate the more sophisticated two-parameter inverse Gaussian distribution and the two-parameter negative-binomial distribution in great detail, together with illustrative real-world data examples. Given an appropriate choice of the respective weight functions, their Stein-MM estimators, which are defined by simple closed-form formulas and allow for closed-form asymptotic computations, exhibit a better performance regarding bias and mean squared error than competing estimators.

Scene Text Image Super-resolution (STISR) has recently achieved great success as a preprocessing method for scene text recognition. STISR aims to transform blurred and noisy low-resolution (LR) text images in real-world settings into clear high-resolution (HR) text images suitable for scene text recognition. In this study, we leverage text-conditional diffusion models (DMs), known for their impressive text-to-image synthesis capabilities, for STISR tasks. Our experimental results revealed that text-conditional DMs notably surpass existing STISR methods. Especially when texts from LR text images are given as input, the text-conditional DMs are able to produce superior quality super-resolution text images. Utilizing this capability, we propose a novel framework for synthesizing LR-HR paired text image datasets. This framework consists of three specialized text-conditional DMs, each dedicated to text image synthesis, super-resolution, and image degradation. These three modules are vital for synthesizing distinct LR and HR paired images, which are more suitable for training STISR methods. Our experiments confirmed that these synthesized image pairs significantly enhance the performance of STISR methods in the TextZoom evaluation.

Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.

Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.

Recent work pre-training Transformers with self-supervised objectives on large text corpora has shown great success when fine-tuned on downstream NLP tasks including text summarization. However, pre-training objectives tailored for abstractive text summarization have not been explored. Furthermore there is a lack of systematic evaluation across diverse domains. In this work, we propose pre-training large Transformer-based encoder-decoder models on massive text corpora with a new self-supervised objective. In PEGASUS, important sentences are removed/masked from an input document and are generated together as one output sequence from the remaining sentences, similar to an extractive summary. We evaluated our best PEGASUS model on 12 downstream summarization tasks spanning news, science, stories, instructions, emails, patents, and legislative bills. Experiments demonstrate it achieves state-of-the-art performance on all 12 downstream datasets measured by ROUGE scores. Our model also shows surprising performance on low-resource summarization, surpassing previous state-of-the-art results on 6 datasets with only 1000 examples. Finally we validated our results using human evaluation and show that our model summaries achieve human performance on multiple datasets.

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

北京阿比特科技有限公司