We study integration and $L^2$-approximation of functions of infinitely many variables in the following setting: The underlying function space is the countably infinite tensor product of univariate Hermite spaces and the probability measure is the corresponding product of the standard normal distribution. The maximal domain of the functions from this tensor product space is necessarily a proper subset of the sequence space $\mathbb{R}^\mathbb{N}$. We establish upper and lower bounds for the minimal worst case errors under general assumptions; these bounds do match for tensor products of well-studied Hermite spaces of functions with finite or with infinite smoothness. In the proofs we employ embedding results, and the upper bounds are attained constructively with the help of multivariate decomposition methods.
In this paper, we formulate and analyse a symmetric low-regularity integrator for solving the nonlinear Klein-Gordon equation in the $d$-dimensional space with $d=1,2,3$. The integrator is constructed based on the two-step trigonometric method and the proposed integrator has a simple form. Error estimates are rigorously presented to show that the integrator can achieve second-order time accuracy in the energy space under the regularity requirement in $H^{1+\frac{d}{4}}\times H^{\frac{d}{4}}$. Moreover, the time symmetry of the scheme ensures the good long-time energy conservation which is rigorously proved by the technique of modulated Fourier expansions. A numerical test is presented and the numerical results demonstrate the superiorities of the new integrator over some existing methods.
Analysis-suitable $G^1$ (AS-$G^1$) multi-patch spline surfaces [4] are particular $G^1$-smooth multi-patch spline surfaces, which are needed to ensure the construction of $C^1$-smooth multi-patch spline spaces with optimal polynomial reproduction properties [16]. We present a novel local approach for the design of AS-$G^1$ multi-patch spline surfaces, which is based on the use of Lagrange multipliers. The presented method is simple and generates an AS-$G^1$ multi-patch spline surface by approximating a given $G^1$-smooth but non-AS-$G^1$ multi-patch surface. Several numerical examples demonstrate the potential of the proposed technique for the construction of AS-$G^1$ multi-patch spline surfaces and show that these surfaces are especially suited for applications in isogeometric analysis by solving the biharmonic problem, a particular fourth order partial differential equation, with optimal rates of convergence over them.
We present an isogeometric collocation method for solving the biharmonic equation over planar bilinearly parameterized multi-patch domains. The developed approach is based on the use of the globally $C^4$-smooth isogeometric spline space [34] to approximate the solution of the considered partial differential equation, and proposes as collocation points two different choices, namely on the one hand the Greville points and on the other hand the so-called superconvergent points. Several examples demonstrate the potential of our collocation method for solving the biharmonic equation over planar multi-patch domains, and numerically study the convergence behavior of the two types of collocation points with respect to the $L^2$-norm as well as to equivalents of the $H^s$-seminorms for $1 \leq s \leq 4$. In the studied case of spline degree $p=9$, the numerical results indicate in case of the Greville points a convergence of order $\mathcal{O}(h^{p-3})$ independent of the considered (semi)norm, and show in case of the superconvergent points an improved convergence of order $\mathcal{O}(h^{p-2})$ for all (semi)norms except for the equivalent of the $H^4$-seminorm, where the order $\mathcal{O}(h^{p-3})$ is anyway optimal.
A posteriori reduced-order models, e.g. proper orthogonal decomposition, are essential to affordably tackle realistic parametric problems. They rely on a trustful training set, that is a family of full-order solutions (snapshots) representative of all possible outcomes of the parametric problem. Having such a rich collection of snapshots is not, in many cases, computationally viable. A strategy for data augmentation, designed for parametric laminar incompressible flows, is proposed to enrich poorly populated training sets. The goal is to include in the new, artificial snapshots emerging features, not present in the original basis, that do enhance the quality of the reduced-order solution. The methodologies devised are based on exploiting basic physical principles, such as mass and momentum conservation, to devise physically-relevant, artificial snapshots at a fraction of the cost of additional full-order solutions. Interestingly, the numerical results show that the ideas exploiting only mass conservation (i.e., incompressibility) are not producing significant added value with respect to the standard linear combinations of snapshots. Conversely, accounting for the linearized momentum balance via the Oseen equation does improve the quality of the resulting approximation and therefore is an effective data augmentation strategy in the framework of viscous incompressible laminar flows.
Most categorical models for dependent types have traditionally been heavily set based: contexts form a category, and for each we have a set of types in said context -- and for each type a set of terms of said type. This is the case for categories with families, categories with attributes, and natural models; in particular, all of them can be traced back to certain discrete Grothendieck fibrations. We extend this intuition to the case of general, non necessarily discrete, fibrations, so that over a given context one has not only a set but a category of types. We argue that the added structure can be attributed to a notion of subtyping that shares many features with that of coercive subtyping, in the sense that it is the product of thinking about subtyping as an abbreviation mechanism: we say that a given type $A'$ is a subtype of $A$ if there is a unique coercion from $A'$ to $A$. Whenever we need a term of type $A$, then, it suffices to have a term of type $A'$, which we can `plug-in' into $A$. For this version of subtyping we provide rules, coherences, and explicit models, and we compare and contrast it to coercive subtyping as introduced by Z. Luo and others. We conclude by suggesting how the tools we present can be employed in finding appropriate rules relating subtyping and certain type constructors.
We revisit $k$-Dominating Set, one of the first problems for which a tight $n^k-o(1)$ conditional lower bound (for $k\ge 3$), based on SETH, was shown (P\u{a}tra\c{s}cu and Williams, SODA 2007). However, the underlying reduction creates dense graphs, raising the question: how much does the sparsity of the graph affect its fine-grained complexity? We first settle the fine-grained complexity of $k$-Dominating Set in terms of both the number of nodes $n$ and number of edges $m$. Specifically, we show an $mn^{k-2-o(1)}$ lower bound based on SETH, for any dependence of $m$ on $n$. This is complemented by an $mn^{k-2+o(1)}$-time algorithm for all $k\ge 3$. For the $k=2$ case, we give a randomized algorithm that employs a Bloom-filter inspired hashing to improve the state of the art of $n^{\omega+o(1)}$ to $m^{\omega/2+o(1)}$. If $\omega=2$, this yields a conditionally tight bound for all $k\ge 2$. To study if $k$-Dominating Set is special in its sensitivity to sparsity, we consider a class of very related problems. The $k$-Dominating Set problem belongs to a type of first-order definable graph properties that we call monochromatic basic problems. These problems are the natural monochromatic variants of the basic problems that were proven complete for the class FOP of first-order definable properties (Gao, Impagliazzo, Kolokolova, and Williams, TALG 2019). We show that among these problems, $k$-Dominating Set is the only one whose fine-grained complexity decreases in sparse graphs. Only for the special case of reflexive properties, is there an additional basic problem that can be solved faster than $n^{k\pm o(1)}$ on sparse graphs. For the natural variant of distance-$r$ $k$-dominating set, we obtain a hardness of $n^{k-o(1)}$ under SETH for every $r\ge 2$ already on sparse graphs, which is tight for sufficiently large $k$.
Deep neural networks (DNNs) often fail silently with over-confident predictions on out-of-distribution (OOD) samples, posing risks in real-world deployments. Existing techniques predominantly emphasize either the feature representation space or the gradient norms computed with respect to DNN parameters, yet they overlook the intricate gradient distribution and the topology of classification regions. To address this gap, we introduce GRadient-aware Out-Of-Distribution detection in interpolated manifolds (GROOD), a novel framework that relies on the discriminative power of gradient space to distinguish between in-distribution (ID) and OOD samples. To build this space, GROOD relies on class prototypes together with a prototype that specifically captures OOD characteristics. Uniquely, our approach incorporates a targeted mix-up operation at an early intermediate layer of the DNN to refine the separation of gradient spaces between ID and OOD samples. We quantify OOD detection efficacy using the distance to the nearest neighbor gradients derived from the training set, yielding a robust OOD score. Experimental evaluations substantiate that the introduction of targeted input mix-upamplifies the separation between ID and OOD in the gradient space, yielding impressive results across diverse datasets. Notably, when benchmarked against ImageNet-1k, GROOD surpasses the established robustness of state-of-the-art baselines. Through this work, we establish the utility of leveraging gradient spaces and class prototypes for enhanced OOD detection for DNN in image classification.
Partitioned neural network functions are used to approximate the solution of partial differential equations. The problem domain is partitioned into non-overlapping subdomains and the partitioned neural network functions are defined on the given non-overlapping subdomains. Each neural network function then approximates the solution in each subdomain. To obtain the convergent neural network solution, certain continuity conditions on the partitioned neural network functions across the subdomain interface need to be included in the loss function, that is used to train the parameters in the neural network functions. In our work, by introducing suitable interface values, the loss function is reformulated into a sum of localized loss functions and each localized loss function is used to train the corresponding local neural network parameters. In addition, to accelerate the neural network solution convergence, the localized loss function is enriched with an augmented Lagrangian term, where the interface condition and the boundary condition are enforced as constraints on the local solutions by using Lagrange multipliers. The local neural network parameters and Lagrange multipliers are then found by optimizing the localized loss function. To take the advantage of the localized loss function for the parallel computation, an iterative algorithm is also proposed. For the proposed algorithms, their training performance and convergence are numerically studied for various test examples.
Given a Binary Decision Diagram $B$ of a Boolean function $\varphi$ in $n$ variables, it is well known that all $\varphi$-models can be enumerated in output polynomial time, and in a compressed way (using don't-care symbols). We show that all $N$ many $\varphi$-models of fixed Hamming-weight $k$ can be enumerated as well in time polynomial in $n$ and $|B|$ and $N$. Furthermore, using novel wildcards, again enables a compressed enumeration of these models.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.