We revisit $k$-Dominating Set, one of the first problems for which a tight $n^k-o(1)$ conditional lower bound (for $k\ge 3$), based on SETH, was shown (P\u{a}tra\c{s}cu and Williams, SODA 2007). However, the underlying reduction creates dense graphs, raising the question: how much does the sparsity of the graph affect its fine-grained complexity? We first settle the fine-grained complexity of $k$-Dominating Set in terms of both the number of nodes $n$ and number of edges $m$. Specifically, we show an $mn^{k-2-o(1)}$ lower bound based on SETH, for any dependence of $m$ on $n$. This is complemented by an $mn^{k-2+o(1)}$-time algorithm for all $k\ge 3$. For the $k=2$ case, we give a randomized algorithm that employs a Bloom-filter inspired hashing to improve the state of the art of $n^{\omega+o(1)}$ to $m^{\omega/2+o(1)}$. If $\omega=2$, this yields a conditionally tight bound for all $k\ge 2$. To study if $k$-Dominating Set is special in its sensitivity to sparsity, we consider a class of very related problems. The $k$-Dominating Set problem belongs to a type of first-order definable graph properties that we call monochromatic basic problems. These problems are the natural monochromatic variants of the basic problems that were proven complete for the class FOP of first-order definable properties (Gao, Impagliazzo, Kolokolova, and Williams, TALG 2019). We show that among these problems, $k$-Dominating Set is the only one whose fine-grained complexity decreases in sparse graphs. Only for the special case of reflexive properties, is there an additional basic problem that can be solved faster than $n^{k\pm o(1)}$ on sparse graphs. For the natural variant of distance-$r$ $k$-dominating set, we obtain a hardness of $n^{k-o(1)}$ under SETH for every $r\ge 2$ already on sparse graphs, which is tight for sufficiently large $k$.
Given two $n$-element structures, $\mathcal{A}$ and $\mathcal{B}$, which can be distinguished by a sentence of $k$-variable first-order logic ($\mathcal{L}^k$), what is the minimum $f(n)$ such that there is guaranteed to be a sentence $\phi \in \mathcal{L}^k$ with at most $f(n)$ quantifiers, such that $\mathcal{A} \models \phi$ but $\mathcal{B} \not \models \phi$? We present various results related to this question obtained by using the recently introduced QVT games. In particular, we show that when we limit the number of variables, there can be an exponential gap between the quantifier depth and the quantifier number needed to separate two structures. Through the lens of this question, we will highlight some difficulties that arise in analysing the QVT game and some techniques which can help to overcome them. As a consequence, we show that $\mathcal{L}^{k+1}$ is exponentially more succinct than $\mathcal{L}^{k}$. We also show, in the setting of the existential-positive fragment, how to lift quantifier depth lower bounds to quantifier number lower bounds. This leads to almost tight bounds.
For the outlier problem in linear regression models, the Student-$t$ linear regression model is one of the common methods for robust modeling and is widely adopted in the literature. However, most of them applies it without careful theoretical consideration. This study provides the practically useful and quite simple conditions to ensure that the Student-$t$ linear regression model is robust against an outlier in the $y$-direction using regular variation theory.
We study the problem of symmetric matrix completion, where the goal is to reconstruct a positive semidefinite matrix $\rm{X}^\star \in \mathbb{R}^{d\times d}$ of rank-$r$, parameterized by $\rm{U}\rm{U}^{\top}$, from only a subset of its observed entries. We show that the vanilla gradient descent (GD) with small initialization provably converges to the ground truth $\rm{X}^\star$ without requiring any explicit regularization. This convergence result holds true even in the over-parameterized scenario, where the true rank $r$ is unknown and conservatively over-estimated by a search rank $r'\gg r$. The existing results for this problem either require explicit regularization, a sufficiently accurate initial point, or exact knowledge of the true rank $r$. In the over-parameterized regime where $r'\geq r$, we show that, with $\widetilde\Omega(dr^9)$ observations, GD with an initial point $\|\rm{U}_0\| \leq \epsilon$ converges near-linearly to an $\epsilon$-neighborhood of $\rm{X}^\star$. Consequently, smaller initial points result in increasingly accurate solutions. Surprisingly, neither the convergence rate nor the final accuracy depends on the over-parameterized search rank $r'$, and they are only governed by the true rank $r$. In the exactly-parameterized regime where $r'=r$, we further enhance this result by proving that GD converges at a faster rate to achieve an arbitrarily small accuracy $\epsilon>0$, provided the initial point satisfies $\|\rm{U}_0\| = O(1/d)$. At the crux of our method lies a novel weakly-coupled leave-one-out analysis, which allows us to establish the global convergence of GD, extending beyond what was previously possible using the classical leave-one-out analysis.
A nearest neighbor representation of a Boolean function $f$ is a set of vectors (anchors) labeled by $0$ or $1$ such that $f(\vec{x}) = 1$ if and only if the closest anchor to $x$ is labeled by $1$. This model was introduced by Hajnal, Liu, and Tur\'an (2022), who studied bounds on the number of anchors required to represent Boolean functions under different choices of anchors (real vs. Boolean vectors) as well as the more expressive model of $k$-nearest neighbors. We initiate the study of the representational power of nearest and $k$-nearest neighbors through Boolean circuit complexity. To this end, we establish a connection between Boolean functions with polynomial nearest neighbor complexity and those that can be efficiently represented by classes based on linear inequalities -- min-plus polynomial threshold functions -- previously studied in relation to threshold circuits. This extends an observation of Hajnal et al. (2022). We obtain exponential lower bounds on the $k$-nearest neighbors complexity of explicit $n$-variate functions, assuming $k \leq n^{1-\epsilon}$. Previously, no superlinear lower bound was known for any $k>1$. Next, we further extend the connection between nearest neighbor representations and circuits to the $k$-nearest neighbors case. As a result, we show that proving superpolynomial lower bounds for the $k$-nearest neighbors complexity of an explicit function for arbitrary $k$ would require a breakthrough in circuit complexity. In addition, we prove an exponential separation between the nearest neighbor and $k$-nearest neighbors complexity (for unrestricted $k$) of an explicit function. These results address questions raised by Hajnal et al. (2022) of proving strong lower bounds for $k$-nearest neighbors and understanding the role of the parameter $k$. Finally, we devise new bounds on the nearest neighbor complexity for several explicit functions.
Cai and Hemachandra used iterative constant-setting to prove that Few $\subseteq$ $\oplus$P (and thus that FewP $\subseteq$ $\oplus$P). In this paper, we note that there is a tension between the nondeterministic ambiguity of the class one is seeking to capture, and the density (or, to be more precise, the needed "nongappy"-ness) of the easy-to-find "targets" used in iterative constant-setting. In particular, we show that even less restrictive gap-size upper bounds regarding the targets allow one to capture ambiguity-limited classes. Through a flexible, metatheorem-based approach, we do so for a wide range of classes including the logarithmic-ambiguity version of Valiant's unambiguous nondeterminism class UP. Our work lowers the bar for what advances regarding the existence of infinite, P-printable sets of primes would suffice to show that restricted counting classes based on the primes have the power to accept superconstant-ambiguity analogues of UP. As an application of our work, we prove that the Lenstra-Pomerance-Wagstaff Conjecture implies that all (O(1) + loglogn)-ambiguity NP sets are in the restricted counting class $\rm RC_{PRIMES}$.
A 2-packing set for an undirected graph $G=(V,E)$ is a subset $\mathcal{S} \subset V$ such that any two vertices $v_1,v_2 \in \mathcal{S}$ have no common neighbors. Finding a 2-packing set of maximum cardinality is a NP-hard problem. We develop a new approach to solve this problem on arbitrary graphs using its close relation to the independent set problem. Thereby, our algorithm red2pack uses new data reduction rules specific to the 2-packing set problem as well as a graph transformation. Our experiments show that we outperform the state-of-the-art for arbitrary graphs with respect to solution quality and also are able to compute solutions multiple orders of magnitude faster than previously possible. For example, we are able to solve 63% of the graphs in the tested data set to optimality in less than a second while the competitor for arbitrary graphs can only solve 5% of these graphs to optimality even with a 10 hour time limit. Moreover, our approach can solve a wide range of large instances that have previously been unsolved.
The research presents the closed-form outage analysis of the newly presented $\alpha$-modification of the shadowed Beaulieu-Xie fading model for wireless communications. For the considered channel, the closed-form analytical expressions for the outage probability (including its upper and lower bounds), raw moments, amount of fading, and channel quality estimation indicator are derived. The carried out thorough numerical simulation and analysis demonstrates strong agreement with the presented closed-form solutions and illustrates the relationship between the outage probability and channel parameters.
We introduce off-policy distributional Q($\lambda$), a new addition to the family of off-policy distributional evaluation algorithms. Off-policy distributional Q($\lambda$) does not apply importance sampling for off-policy learning, which introduces intriguing interactions with signed measures. Such unique properties distributional Q($\lambda$) from other existing alternatives such as distributional Retrace. We characterize the algorithmic properties of distributional Q($\lambda$) and validate theoretical insights with tabular experiments. We show how distributional Q($\lambda$)-C51, a combination of Q($\lambda$) with the C51 agent, exhibits promising results on deep RL benchmarks.
A graph $G=(V,E)$ is said to be distance magic if there is a bijection $f$ from a vertex set of $G$ to the first $|V(G)|$ natural numbers such that for each vertex $v$, its weight given by $\sum_{u \in N(v)}f(u)$ is constant, where $N(v)$ is an open neighborhood of a vertex $v$. In this paper, we introduce the concept of $p$-distance magic labeling and establish the necessary and sufficient condition for a graph to be distance magic. Additionally, we introduce necessary and sufficient conditions for a connected regular graph to exhibit distance magic properties in terms of the eigenvalues of its adjacency and Laplacian matrices. Furthermore, we study the spectra of distance magic graphs, focusing on singular distance magic graphs. Also, we show that the number of distance magic labelings of a graph is, at most, the size of its automorphism group.
An essential requirement of spanners in many applications is to be fault-tolerant: a $(1+\epsilon)$-spanner of a metric space is called (vertex) $f$-fault-tolerant ($f$-FT) if it remains a $(1+\epsilon)$-spanner (for the non-faulty points) when up to $f$ faulty points are removed from the spanner. Fault-tolerant (FT) spanners for Euclidean and doubling metrics have been extensively studied since the 90s. For low-dimensional Euclidean metrics, Czumaj and Zhao in SoCG'03 [CZ03] showed that the optimal guarantees $O(f n)$, $O(f)$ and $O(f^2)$ on the size, degree and lightness of $f$-FT spanners can be achieved via a greedy algorithm, which na\"{\i}vely runs in $O(n^3) \cdot 2^{O(f)}$ time. The question of whether the optimal bounds of [CZ03] can be achieved via a fast construction has remained elusive, with the lightness parameter being the bottleneck. Moreover, in the wider family of doubling metrics, it is not even clear whether there exists an $f$-FT spanner with lightness that depends solely on $f$ (even exponentially): all existing constructions have lightness $\Omega(\log n)$ since they are built on the net-tree spanner, which is induced by a hierarchical net-tree of lightness $\Omega(\log n)$. In this paper we settle in the affirmative these longstanding open questions. Specifically, we design a construction of $f$-FT spanners that is optimal with respect to all the involved parameters (size, degree, lightness and running time): For any $n$-point doubling metric, any $\epsilon > 0$, and any integer $1 \le f \le n-2$, our construction provides, within time $O(n \log n + f n)$, an $f$-FT $(1+\epsilon)$-spanner with size $O(f n)$, degree $O(f)$ and lightness $O(f^2)$.