亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The research presents the closed-form outage analysis of the newly presented $\alpha$-modification of the shadowed Beaulieu-Xie fading model for wireless communications. For the considered channel, the closed-form analytical expressions for the outage probability (including its upper and lower bounds), raw moments, amount of fading, and channel quality estimation indicator are derived. The carried out thorough numerical simulation and analysis demonstrates strong agreement with the presented closed-form solutions and illustrates the relationship between the outage probability and channel parameters.

相關內容

Classical convergence analyses for optimization algorithms rely on the widely-adopted uniform smoothness assumption. However, recent experimental studies have demonstrated that many machine learning problems exhibit non-uniform smoothness, meaning the smoothness factor is a function of the model parameter instead of a universal constant. In particular, it has been observed that the smoothness grows with respect to the gradient norm along the training trajectory. Motivated by this phenomenon, the recently introduced $(L_0, L_1)$-smoothness is a more general notion, compared to traditional $L$-smoothness, that captures such positive relationship between smoothness and gradient norm. Under this type of non-uniform smoothness, existing literature has designed stochastic first-order algorithms by utilizing gradient clipping techniques to obtain the optimal $\mathcal{O}(\epsilon^{-3})$ sample complexity for finding an $\epsilon$-approximate first-order stationary solution. Nevertheless, the studies of quasi-Newton methods are still lacking. Considering higher accuracy and more robustness for quasi-Newton methods, in this paper we propose a fast stochastic quasi-Newton method when there exists non-uniformity in smoothness. Leveraging gradient clipping and variance reduction, our algorithm can achieve the best-known $\mathcal{O}(\epsilon^{-3})$ sample complexity and enjoys convergence speedup with simple hyperparameter tuning. Our numerical experiments show that our proposed algorithm outperforms the state-of-the-art approaches.

We prove that the single-site Glauber dynamics for sampling proper $q$-colorings mixes in $O_\Delta(n\log n)$ time on line graphs with $n$ vertices and maximum degree $\Delta$ when $q>(1+o(1))\Delta$. The main tool in our proof is the matrix trickle-down theorem developed by Abdolazimi, Liu and Oveis Gharan (FOCS, 2021).

This paper discusses the theory and numerical method of two-scale analysis for the multiscale Landau-Lifshitz-Gilbert equation in composite ferromagnetic materials. The novelty of this work can be summarized in three aspects: Firstly, the more realistic and complex model is considered, including the effects of the exchange field, anisotropy field, stray field, and external magnetic field. The explicit convergence orders in the $H^1$ norm between the classical solution and the two-scale solution are obtained. Secondly, we propose a robust numerical framework, which is employed in several comprehensive experiments to validate the convergence results for the Periodic and Neumann problems. Thirdly, we design an improved implicit numerical scheme to reduce the required number of iterations and relaxes the constraints on the time step size, which can significantly improve computational efficiency. Specifically, the projection and the expansion methods are given to overcome the inherent non-consistency in the initial data between the multiscale problem and homogenized problem.

We study the problem of testing and recovering $k$-clique Ferromagnetic mean shift in the planted Sherrington-Kirkpatrick model (i.e., a type of spin glass model) with $n$ spins. The planted SK model -- a stylized mixture of an uncountable number of Ising models -- allows us to study the fundamental limits of correlation analysis for dependent random variables under misspecification. Our paper makes three major contributions: (i) We identify the phase diagrams of the testing problem by providing minimax optimal rates for multiple different parameter regimes. We also provide minimax optimal rates for exact recovery in the high/critical and low temperature regimes. (ii) We prove a universality result implying that all the obtained rates still hold with non-Gaussian couplings. (iii) To achieve the major results, we also establish a family of novel concentration bounds and central limiting theorems for the averaging statistics in the local and global phases of the planted SK model. These technical results shed new insights into the planted spin glass models. The pSK model also exhibits close connections with a binary variant of the single spike Gaussian sparse principle component analysis model by replacing the background identity precision matrix with a Wigner random matrix.

We study the problem of testing and recovering the hidden $k$-clique Ferromagnetic correlation in the planted Random Field Curie-Weiss model (a.k.a. the pRFCW model). The pRFCW model is a random effect Ising model that exhibits richer phase diagrams both statistically and physically than the standard Curie-Weiss model. Using an alternative characterization of parameter regimes as 'temperatures' and the mean values as 'outer magnetic fields,' we establish the minimax optimal detection rates and recovery rates. The results consist of $7$ distinctive phases for testing and $3$ phases for exact recovery. Our results also imply that the randomness of the outer magnetic field contributes to countable possible convergence rates, which are not observed in the fixed field model. As a byproduct of the proof techniques, we provide two new mathematical results: (1) A family of tail bounds for the average magnetization of the Random Field Curie-Weiss model (a.k.a. the RFCW model) across all temperatures and arbitrary outer fields. (2) A sharp estimate of the information divergence between RFCW models. These play pivotal roles in establishing the major theoretical results in this paper. Additionally, we show that the mathematical structure involved in the pRFCW hidden clique inference problem resembles a 'sparse PCA-like' problem for discrete data. The richer statistical phases than the long-studied Gaussian counterpart shed new light on the theoretical insight of sparse PCA for discrete data.

In this work, maximal $\alpha$-leakage is introduced to quantify how much a quantum adversary can learn about any sensitive information of data upon observing its disturbed version via a quantum privacy mechanism. We first show that an adversary's maximal expected $\alpha$-gain using optimal measurement is characterized by measured conditional R\'enyi entropy. This can be viewed as a parametric generalization of K\"onig et al.'s famous guessing probability formula [IEEE Trans. Inf. Theory, 55(9), 2009]. Then, we prove that the $\alpha$-leakage and maximal $\alpha$-leakage for a quantum privacy mechanism are determined by measured Arimoto information and measured R\'enyi capacity, respectively. Various properties of maximal $\alpha$-leakage, such as data processing inequality and composition property are established as well. Moreover, we show that regularized $\alpha$-leakage and regularized maximal $\alpha$-leakage for identical and independent quantum privacy mechanisms coincide with $\alpha$-tilted sandwiched R\'enyi information and sandwiched R\'enyi capacity, respectively.

Limit theorems for the magnetization in the $p$-spin Curie-Weiss model, for $p \geq 3$, has been derived recently by Mukherjee et al. (2021). In this paper, we strengthen these results by proving Cram\'er-type moderate deviation theorems and Berry-Esseen bounds for the magnetization (suitably centered and scaled). In particular, we show that the rate of convergence is $O(N^{-\frac{1}{2}})$ when the magnetization has asymptotically Gaussian fluctuations, and it is $O(N^{-\frac{1}{4}})$ when the fluctuations are non-Gaussian. As an application, we derive a Berry-Esseen bound for the maximum pseudolikelihood estimate of the inverse temperature in $p$-spin Curie-Weiss model with no external field, for all points in the parameter space where consistent estimation is possible.

The analysis of scientific data and complex multivariate systems requires information quantities that capture relationships among multiple random variables. Recently, new information-theoretic measures have been developed to overcome the shortcomings of classical ones, such as mutual information, that are restricted to considering pairwise interactions. Among them, the concept of information synergy and redundancy is crucial for understanding the high-order dependencies between variables. One of the most prominent and versatile measures based on this concept is O-information, which provides a clear and scalable way to quantify the synergy-redundancy balance in multivariate systems. However, its practical application is limited to simplified cases. In this work, we introduce S$\Omega$I, which allows for the first time to compute O-information without restrictive assumptions about the system. Our experiments validate our approach on synthetic data, and demonstrate the effectiveness of S$\Omega$I in the context of a real-world use case.

The back-end module of Distributed Collaborative Simultaneous Localization and Mapping (DCSLAM) requires solving a nonlinear Pose Graph Optimization (PGO) under a distributed setting, also known as SE(d)-synchronization. Most existing distributed graph optimization algorithms employ a simple sequential partitioning scheme, which may result in unbalanced subgraph dimensions due to the different geographic locations of each robot, and hence imposes extra communication load. Moreover, the performance of current Riemannian optimization algorithms can be further accelerated. In this letter, we propose a novel distributed pose graph optimization algorithm combining multi-level partitioning with an accelerated Riemannian optimization method. Firstly, we employ the multi-level graph partitioning algorithm to preprocess the naive pose graph to formulate a balanced optimization problem. In addition, inspired by the accelerated coordinate descent method, we devise an Improved Riemannian Block Coordinate Descent (IRBCD) algorithm and the critical point obtained is globally optimal. Finally, we evaluate the effects of four common graph partitioning approaches on the correlation of the inter-subgraphs, and discover that the Highest scheme has the best partitioning performance. Also, we implement simulations to quantitatively demonstrate that our proposed algorithm outperforms the state-of-the-art distributed pose graph optimization protocols.

Knapsack is one of the most fundamental problems in theoretical computer science. In the $(1 - \epsilon)$-approximation setting, although there is a fine-grained lower bound of $(n + 1 / \epsilon) ^ {2 - o(1)}$ based on the $(\min, +)$-convolution hypothesis ([K{\"u}nnemann, Paturi and Stefan Schneider, ICALP 2017] and [Cygan, Mucha, Wegrzycki and Wlodarczyk, 2017]), the best algorithm is randomized and runs in $\tilde O\left(n + (\frac{1}{\epsilon})^{11/5}/2^{\Omega(\sqrt{\log(1/\epsilon)})}\right)$ time [Deng, Jin and Mao, SODA 2023], and it remains an important open problem whether an algorithm with a running time that matches the lower bound (up to a sub-polynomial factor) exists. We answer the question positively by showing a deterministic $(1 - \epsilon)$-approximation scheme for knapsack that runs in $\tilde O(n + (1 / \epsilon) ^ {2})$ time. We first extend a known lemma in a recursive way to reduce the problem to $n \epsilon$-additive approximation for $n$ items with profits in $[1, 2)$. Then we give a simple efficient geometry-based algorithm for the reduced problem.

北京阿比特科技有限公司