亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bayesian optimization (BO) with Gaussian processes (GP) as surrogate models is widely used to optimize analytically unknown and expensive-to-evaluate functions. In this paper, we propose Prior-mean-RObust Bayesian Optimization (PROBO) that outperforms classical BO on specific problems. First, we study the effect of the Gaussian processes' prior specifications on classical BO's convergence. We find the prior's mean parameters to have the highest influence on convergence among all prior components. In response to this result, we introduce PROBO as a generalization of BO that aims at rendering the method more robust towards prior mean parameter misspecification. This is achieved by explicitly accounting for GP imprecision via a prior near-ignorance model. At the heart of this is a novel acquisition function, the generalized lower confidence bound (GLCB). We test our approach against classical BO on a real-world problem from material science and observe PROBO to converge faster. Further experiments on multimodal and wiggly target functions confirm the superiority of our method.

相關內容

When hyperparameter optimization of a machine learning algorithm is repeated for multiple datasets it is possible to transfer knowledge to an optimization run on a new dataset. We develop a new hyperparameter-free ensemble model for Bayesian optimization that is a generalization of two existing transfer learning extensions to Bayesian optimization and establish a worst-case bound compared to vanilla Bayesian optimization. Using a large collection of hyperparameter optimization benchmark problems, we demonstrate that our contributions substantially reduce optimization time compared to standard Gaussian process-based Bayesian optimization and improve over the current state-of-the-art for transfer hyperparameter optimization.

In solving multi-modal, multi-objective optimization problems (MMOPs), the objective is not only to find a good representation of the Pareto-optimal front (PF) in the objective space but also to find all equivalent Pareto-optimal subsets (PSS) in the variable space. Such problems are practically relevant when a decision maker (DM) is interested in identifying alternative designs with similar performance. There has been significant research interest in recent years to develop efficient algorithms to deal with MMOPs. However, the existing algorithms still require prohibitive number of function evaluations (often in several thousands) to deal with problems involving as low as two objectives and two variables. The algorithms are typically embedded with sophisticated, customized mechanisms that require additional parameters to manage the diversity and convergence in the variable and the objective spaces. In this letter, we introduce a steady-state evolutionary algorithm for solving MMOPs, with a simple design and no additional userdefined parameters that need tuning compared to a standard EA. We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations. The performance of the proposed algorithm is compared with six state-of-the-art algorithms (MO Ring PSO SCD, DN-NSGAII, TriMOEA-TA&R, CPDEA, MMOEA/DC and MMEA-WI). The proposed algorithm exhibits significantly better performance than the above algorithms based on the established metrics including IGDX, PSP and IGD. We hope this study would encourage design of simple, efficient and generalized algorithms to improve its uptake for practical applications.

(Gradient) Expectation Maximization (EM) is a widely used algorithm for estimating the maximum likelihood of mixture models or incomplete data problems. A major challenge facing this popular technique is how to effectively preserve the privacy of sensitive data. Previous research on this problem has already lead to the discovery of some Differentially Private (DP) algorithms for (Gradient) EM. However, unlike in the non-private case, existing techniques are not yet able to provide finite sample statistical guarantees. To address this issue, we propose in this paper the first DP version of (Gradient) EM algorithm with statistical guarantees. Moreover, we apply our general framework to three canonical models: Gaussian Mixture Model (GMM), Mixture of Regressions Model (MRM) and Linear Regression with Missing Covariates (RMC). Specifically, for GMM in the DP model, our estimation error is near optimal in some cases. For the other two models, we provide the first finite sample statistical guarantees. Our theory is supported by thorough numerical experiments.

The principle of majorization-minimization (MM) provides a general framework for eliciting effective algorithms to solve optimization problems. However, they often suffer from slow convergence, especially in large-scale and high-dimensional data settings. This has drawn attention to acceleration schemes designed exclusively for MM algorithms, but many existing designs are either problem-specific or rely on approximations and heuristics loosely inspired by the optimization literature. We propose a novel, rigorous quasi-Newton method for accelerating any valid MM algorithm, cast as seeking a fixed point of the MM \textit{algorithm map}. The method does not require specific information or computation from the objective function or its gradient and enjoys a limited-memory variant amenable to efficient computation in high-dimensional settings. By connecting our approach to Broyden's classical root-finding methods, we establish convergence guarantees and identify conditions for linear and super-linear convergence. These results are validated numerically and compared to peer methods in a thorough empirical study, showing that it achieves state-of-the-art performance across a diverse range of problems.

Zeroth-order optimization methods are developed to overcome the practical hurdle of having knowledge of explicit derivatives. Instead, these schemes work with merely access to noisy functions evaluations. The predominant approach is to mimic first-order methods by means of some gradient estimator. The theoretical limitations are well-understood, yet, as most of these methods rely on finite-differencing for shrinking differences, numerical cancellation can be catastrophic. The numerical community developed an efficient method to overcome this by passing to the complex domain. This approach has been recently adopted by the optimization community and in this work we analyze the practically relevant setting of dealing with computational noise. To exemplify the possibilities we focus on the strongly-convex optimization setting and provide a variety of non-asymptotic results, corroborated by numerical experiments, and end with local non-convex optimization.

The difficulty in specifying rewards for many real-world problems has led to an increased focus on learning rewards from human feedback, such as demonstrations. However, there are often many different reward functions that explain the human feedback, leaving agents with uncertainty over what the true reward function is. While most policy optimization approaches handle this uncertainty by optimizing for expected performance, many applications demand risk-averse behavior. We derive a novel policy gradient-style robust optimization approach, PG-BROIL, that optimizes a soft-robust objective that balances expected performance and risk. To the best of our knowledge, PG-BROIL is the first policy optimization algorithm robust to a distribution of reward hypotheses which can scale to continuous MDPs. Results suggest that PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse and outperforms state-of-the-art imitation learning algorithms when learning from ambiguous demonstrations by hedging against uncertainty, rather than seeking to uniquely identify the demonstrator's reward function.

Recent work has proposed stochastic Plackett-Luce (PL) ranking models as a robust choice for optimizing relevance and fairness metrics. Unlike their deterministic counterparts that require heuristic optimization algorithms, PL models are fully differentiable. Theoretically, they can be used to optimize ranking metrics via stochastic gradient descent. However, in practice, the computation of the gradient is infeasible because it requires one to iterate over all possible permutations of items. Consequently, actual applications rely on approximating the gradient via sampling techniques. In this paper, we introduce a novel algorithm: PL-Rank, that estimates the gradient of a PL ranking model w.r.t. both relevance and fairness metrics. Unlike existing approaches that are based on policy gradients, PL-Rank makes use of the specific structure of PL models and ranking metrics. Our experimental analysis shows that PL-Rank has a greater sample-efficiency and is computationally less costly than existing policy gradients, resulting in faster convergence at higher performance. PL-Rank further enables the industry to apply PL models for more relevant and fairer real-world ranking systems.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

Robust estimation is much more challenging in high dimensions than it is in one dimension: Most techniques either lead to intractable optimization problems or estimators that can tolerate only a tiny fraction of errors. Recent work in theoretical computer science has shown that, in appropriate distributional models, it is possible to robustly estimate the mean and covariance with polynomial time algorithms that can tolerate a constant fraction of corruptions, independent of the dimension. However, the sample and time complexity of these algorithms is prohibitively large for high-dimensional applications. In this work, we address both of these issues by establishing sample complexity bounds that are optimal, up to logarithmic factors, as well as giving various refinements that allow the algorithms to tolerate a much larger fraction of corruptions. Finally, we show on both synthetic and real data that our algorithms have state-of-the-art performance and suddenly make high-dimensional robust estimation a realistic possibility.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司