亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in diffusion models bring the state-of-the art performance on image generation tasks. However, empirical results on previous research in diffusion models imply that there is an inverse correlation on performances for density estimation and sample generation. This paper analyzes that the inverse correlation arises because density estimation is mostly contributed from small diffusion time, whereas sample generation mainly depends on large diffusion time. However, training score network on both small and large diffusion time is demanding because of the loss imbalance issue. To successfully train the score network on both small and large diffusion time, this paper introduces a training technique, Soft Truncation, that softens the truncation time for every mini-batch update, which is universally applicable to any types of diffusion models. It turns out that Soft Truncation is equivalent to a diffusion model with a general weight, and we prove the variational bound of the general weighted diffusion model. In view of this variational bound, Soft Truncation becomes a natural way to train the score network. In experiments, Soft Truncation achieves the state-of-the-art performance on CIFAR-10, CelebA, CelebA-HQ $256\times 256$, and STL-10 datasets.

相關內容

We propose methods to train convolutional neural networks (CNNs) with both binarized weights and activations, leading to quantized models that are specifically friendly to mobile devices with limited power capacity and computation resources. Previous works on quantizing CNNs often seek to approximate the floating-point information using a set of discrete values, which we call value approximation, typically assuming the same architecture as the full-precision networks. Here we take a novel "structure approximation" view of quantization -- it is very likely that different architectures designed for low-bit networks may be better for achieving good performance. In particular, we propose a "network decomposition" strategy, termed Group-Net, in which we divide the network into groups. Thus, each full-precision group can be effectively reconstructed by aggregating a set of homogeneous binary branches. In addition, we learn effective connections among groups to improve the representation capability. Moreover, the proposed Group-Net shows strong generalization to other tasks. For instance, we extend Group-Net for accurate semantic segmentation by embedding rich context into the binary structure. Furthermore, for the first time, we apply binary neural networks to object detection. Experiments on both classification, semantic segmentation and object detection tasks demonstrate the superior performance of the proposed methods over various quantized networks in the literature. Our methods outperform the previous best binary neural networks in terms of accuracy and computation efficiency.

Due to the importance of the lower bounding distances and the attractiveness of symbolic representations, the family of symbolic aggregate approximations (SAX) has been used extensively for encoding time series data. However, typical SAX-based methods rely on two restrictive assumptions; the Gaussian distribution and equiprobable symbols. This paper proposes two novel data-driven SAX-based symbolic representations, distinguished by their discretization steps. The first representation, oriented for general data compaction and indexing scenarios, is based on the combination of kernel density estimation and Lloyd-Max quantization to minimize the information loss and mean squared error in the discretization step. The second method, oriented for high-level mining tasks, employs the Mean-Shift clustering method and is shown to enhance anomaly detection in the lower-dimensional space. Besides, we verify on a theoretical basis a previously observed phenomenon of the intrinsic process that results in a lower than the expected variance of the intermediate piecewise aggregate approximation. This phenomenon causes an additional information loss but can be avoided with a simple modification. The proposed representations possess all the attractive properties of the conventional SAX method. Furthermore, experimental evaluation on real-world datasets demonstrates their superiority compared to the traditional SAX and an alternative data-driven SAX variant.

Change detection is an important synthetic aperture radar (SAR) application, usually used to detect changes on the ground scene measurements in different moments in time. Traditionally, change detection algorithm (CDA) is mainly designed for two synthetic aperture radar (SAR) images retrieved at different instants. However, more images can be used to improve the algorithms performance, witch emerges as a research topic on SAR change detection. Image stack information can be treated as a data series over time and can be modeled by autoregressive (AR) models. Thus, we present some initial findings on SAR change detection based on image stack considering AR models. Applying AR model for each pixel position in the image stack, we obtained an estimated image of the ground scene which can be used as a reference image for CDA. The experimental results reveal that ground scene estimates by the AR models is accurate and can be used for change detection applications.

For stable training of generative adversarial networks (GANs), injecting instance noise into the input of the discriminator is considered as a theoretically sound solution, which, however, has not yet delivered on its promise in practice. This paper introduces Diffusion-GAN that employs a Gaussian mixture distribution, defined over all the diffusion steps of a forward diffusion chain, to inject instance noise. A random sample from the mixture, which is diffused from an observed or generated data, is fed as the input to the discriminator. The generator is updated by backpropagating its gradient through the forward diffusion chain, whose length is adaptively adjusted to control the maximum noise-to-data ratio allowed at each training step. Theoretical analysis verifies the soundness of the proposed Diffusion-GAN, which provides model- and domain-agnostic differentiable augmentation. A rich set of experiments on diverse datasets show that Diffusion-GAN can provide stable and data-efficient GAN training, bringing consistent performance improvement over strong GAN baselines for synthesizing photo-realistic images.

Rate splitting (RS) systems can better deal with imperfect channel state information at the transmitter (CSIT) than conventional approaches. However, this requires an appropriate power allocation that often has a high computational complexity, which might be inadequate for practical and large systems. To this end, adaptive power allocation techniques can provide good performance with low computational cost. This work presents novel robust and adaptive power allocation technique for RS-based multiuser multiple-input multiple-output (MU-MIMO) systems. In particular, we develop a robust adaptive power allocation based on stochastic gradient learning and the minimization of the mean-square error between the transmitted symbols of the RS system and the received signal. The proposed robust power allocation strategy incorporates knowledge of the variance of the channel errors to deal with imperfect CSIT and adjust power levels in the presence of uncertainty. An analysis of the convexity and stability of the proposed power allocation algorithms is provided, together with a study of their computational complexity and theoretical bounds relating the power allocation strategies. Numerical results show that the sum-rate of an RS system with adaptive power allocation outperforms RS and conventional MU-MIMO systems under imperfect CSIT. %\vspace{-0.75em}

From a model-building perspective, in this paper we propose a paradigm shift for fitting over-parameterized models. Philosophically, the mindset is to fit models to future observations rather than to the observed sample. Technically, choosing an imputation model for generating future observations, we fit over-parameterized models to future observations via optimizing an approximation to the desired expected loss-function based on its sample counterpart and an adaptive simplicity-preference function. This technique is discussed in detail to both creating bootstrap imputation and final estimation with bootstrap imputation. The method is illustrated with the many-normal-means problem, $n < p$ linear regression, and deep convolutional neural networks for image classification of MNIST digits. The numerical results demonstrate superior performance across these three different types of applications. For example, for the many-normal-means problem, our method uniformly dominates James-Stein and Efron's $g-$modeling, and for the MNIST image classification, it performs better than all existing methods and reaches arguably the best possible result. While this paper is largely expository because of the ambitious task of taking a look at over-parameterized models from the new perspective, fundamental theoretical properties are also investigated. We conclude the paper with a few remarks.

Convolutional Neural Network (CNN) have been widely used in image classification. Over the years, they have also benefited from various enhancements and they are now considered as state of the art techniques for image like data. However, when they are used for regression to estimate some function value from images, fewer recommendations are available. In this study, a novel CNN regression model is proposed. It combines convolutional neural layers to extract high level features representations from images with a soft labelling technique. More specifically, as the deep regression task is challenging, the idea is to account for some uncertainty in the targets that are seen as distributions around their mean. The estimations are carried out by the model in the form of distributions. Building from earlier work, a specific histogram loss function based on the Kullback-Leibler (KL) divergence is applied during training. The model takes advantage of the CNN feature representation and is able to carry out estimation from multi-channel input images. To assess and illustrate the technique, the model is applied to Global Navigation Satellite System (GNSS) multi-path estimation where multi-path signal parameters have to be estimated from correlator output images from the I and Q channels. The multi-path signal delay, magnitude, Doppler shift frequency and phase parameters are estimated from synthetically generated datasets of satellite signals. Experiments are conducted under various receiving conditions and various input images resolutions to test the estimation performances quality and robustness. The results show that the proposed soft labelling CNN technique using distributional loss outperforms classical CNN regression under all conditions. Furthermore, the extra learning performance achieved by the model allows the reduction of input image resolution from 80x80 down to 40x40 or sometimes 20x20.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on pose. The model is based on a generative adversarial network (GAN) and used specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and highly complementary to features learned with the original images. Importantly, we now have a model that generalizes to any new re-id dataset without the need for collecting any training data for model fine-tuning, thus making a deep re-id model truly scalable. Extensive experiments on five benchmarks show that our model outperforms the state-of-the-art models, often significantly. In particular, the features learned on Market-1501 can achieve a Rank-1 accuracy of 68.67% on VIPeR without any model fine-tuning, beating almost all existing models fine-tuned on the dataset.

北京阿比特科技有限公司