We develop an \textit{a posteriori} error analysis for a numerical estimate of the time at which a functional of the solution to a partial differential equation (PDE) first achieves a threshold value on a given time interval. This quantity of interest (QoI) differs from classical QoIs which are modeled as bounded linear (or nonlinear) functionals {of the solution}. Taylor's theorem and an adjoint-based \textit{a posteriori} analysis is used to derive computable and accurate error estimates in the case of semi-linear parabolic and hyperbolic PDEs. The accuracy of the error estimates is demonstrated through numerical solutions of the one-dimensional heat equation and linearized shallow water equations (SWE), representing parabolic and hyperbolic cases, respectively.
Given a partial differential equation (PDE), goal-oriented error estimation allows us to understand how errors in a diagnostic quantity of interest (QoI), or goal, occur and accumulate in a numerical approximation, for example using the finite element method. By decomposing the error estimates into contributions from individual elements, it is possible to formulate adaptation methods, which modify the mesh with the objective of minimising the resulting QoI error. However, the standard error estimate formulation involves the true adjoint solution, which is unknown in practice. As such, it is common practice to approximate it with an 'enriched' approximation (e.g. in a higher order space or on a refined mesh). Doing so generally results in a significant increase in computational cost, which can be a bottleneck compromising the competitiveness of (goal-oriented) adaptive simulations. The central idea of this paper is to develop a "data-driven" goal-oriented mesh adaptation approach through the selective replacement of the expensive error estimation step with an appropriately configured and trained neural network. In doing so, the error estimator may be obtained without even constructing the enriched spaces. An element-by-element construction is employed here, whereby local values of various parameters related to the mesh geometry and underlying problem physics are taken as inputs, and the corresponding contribution to the error estimator is taken as output. We demonstrate that this approach is able to obtain the same accuracy with a reduced computational cost, for adaptive mesh test cases related to flow around tidal turbines, which interact via their downstream wakes, and where the overall power output of the farm is taken as the QoI. Moreover, we demonstrate that the element-by-element approach implies reasonably low training costs.
Consider the sum $Y=B+B(H)$ of a Brownian motion $B$ and an independent fractional Brownian motion $B(H)$ with Hurst parameter $H\in(0,1)$. Surprisingly, even though $B(H)$ is not a semimartingale, Cheridito proved in [Bernoulli 7 (2001) 913--934] that $Y$ is a semimartingale if $H>3/4$. Moreover, $Y$ is locally equivalent to $B$ in this case, so $H$ cannot be consistently estimated from local observations of $Y$. This paper pivots on a second surprise in this model: if $B$ and $B(H)$ become correlated, then $Y$ will never be a semimartingale, and $H$ can be identified, regardless of its value. This and other results will follow from a detailed statistical analysis of a more general class of processes called mixed semimartingales, which are semiparametric extensions of $Y$ with stochastic volatility in both the martingale and the fractional component. In particular, we derive consistent estimators and feasible central limit theorems for all parameters and processes that can be identified from high-frequency observations. We further show that our estimators achieve optimal rates in a minimax sense. The estimation of mixed semimartingales with correlation is motivated by applications to high-frequency financial data contaminated by rough noise.
We establish the minimax risk for parameter estimation in sparse high-dimensional Gaussian mixture models and show that a constrained maximum likelihood estimator (MLE) achieves the minimax optimality. However, the optimization-based constrained MLE is computationally intractable due to non-convexity of the problem. Therefore, we propose a Bayesian approach to estimate high-dimensional Gaussian mixtures whose cluster centers exhibit sparsity using a continuous spike-and-slab prior, and prove that the posterior contraction rate of the proposed Bayesian method is minimax optimal. The mis-clustering rate is obtained as a by-product using tools from matrix perturbation theory. Computationally, posterior inference of the proposed Bayesian method can be implemented via an efficient Gibbs sampler with data augmentation, circumventing the challenging frequentist nonconvex optimization-based algorithms. The proposed Bayesian sparse Gaussian mixture model does not require pre-specifying the number of clusters, which is allowed to grow with the sample size and can be adaptively estimated via posterior inference. The validity and usefulness of the proposed method is demonstrated through simulation studies and the analysis of a real-world single-cell RNA sequencing dataset.
Heterogeneity is a dominant factor in the behaviour of many biological processes. Despite this, it is common for mathematical and statistical analyses to ignore biological heterogeneity as a source of variability in experimental data. Therefore, methods for exploring the identifiability of models that explicitly incorporate heterogeneity through variability in model parameters are relatively underdeveloped. We develop a new likelihood-based framework, based on moment matching, for inference and identifiability analysis of differential equation models that capture biological heterogeneity through parameters that vary according to probability distributions. As our novel method is based on an approximate likelihood function, it is highly flexible; we demonstrate identifiability analysis using both a frequentist approach based on profile likelihood, and a Bayesian approach based on Markov-chain Monte Carlo. Through three case studies, we demonstrate our method by providing a didactic guide to inference and identifiability analysis of hyperparameters that relate to the statistical moments of model parameters from independent observed data. Our approach has a computational cost comparable to analysis of models that neglect heterogeneity, a significant improvement over many existing alternatives. We demonstrate how analysis of random parameter models can aid better understanding of the sources of heterogeneity from biological data.
It was observed in \citet{gupta2009differentially} that the Set Cover problem has strong impossibility results under differential privacy. In our work, we observe that these hardness results dissolve when we turn to the Partial Set Cover problem, where we only need to cover a $\rho$-fraction of the elements in the universe, for some $\rho\in(0,1)$. We show that this relaxation enables us to avoid the impossibility results: under loose conditions on the input set system, we give differentially private algorithms which output an explicit set cover with non-trivial approximation guarantees. In particular, this is the first differentially private algorithm which outputs an explicit set cover. Using our algorithm for Partial Set Cover as a subroutine, we give a differentially private (bicriteria) approximation algorithm for a facility location problem which generalizes $k$-center/$k$-supplier with outliers. Like with the Set Cover problem, no algorithm has been able to give non-trivial guarantees for $k$-center/$k$-supplier-type facility location problems due to the high sensitivity and impossibility results. Our algorithm shows that relaxing the covering requirement to serving only a $\rho$-fraction of the population, for $\rho\in(0,1)$, enables us to circumvent the inherent hardness. Overall, our work is an important step in tackling and understanding impossibility results in private combinatorial optimization.
We consider parameter estimation of stochastic differential equations driven by a Wiener process and a compound Poisson process as small noises. The goal is to give a threshold-type quasi-likelihood estimator and show its consistency and asymptotic normality under new asymptotics. One of the novelties of the paper is that we give a new localization argument, which enables us to avoid truncation in the contrast function that has been used in earlier works and to deal with a wider class of jumps in threshold estimation than ever before.
We consider power means of independent and identically distributed (i.i.d.) non-integrable random variables. The power mean is a homogeneous quasi-arithmetic mean, and under some conditions, several limit theorems hold for the power mean as well as for the arithmetic mean of i.i.d. integrable random variables. We establish integrabilities and a limit theorem for the variances of the power mean of i.i.d. non-integrable random variables. We also consider behaviors of the power mean when the parameter of the power varies. Our feature is that the generator of the power mean is allowed to be complex-valued, which enables us to consider the power mean of random variables supported on the whole set of real numbers. The complex-valued power mean is an unbiased strongly-consistent estimator for the joint of the location and scale parameters of the Cauchy distribution.
This study develops an asymptotic theory for estimating the time-varying characteristics of locally stationary functional time series. We investigate a kernel-based method to estimate the time-varying covariance operator and the time-varying mean function of a locally stationary functional time series. In particular, we derive the convergence rate of the kernel estimator of the covariance operator and associated eigenvalue and eigenfunctions and establish a central limit theorem for the kernel-based locally weighted sample mean. As applications of our results, we discuss the prediction of locally stationary functional time series and methods for testing the equality of time-varying mean functions in two functional samples.
We present a new approach-the ALVar estimator-to estimation of asymptotic variance in sequential Monte Carlo methods, or, particle filters. The method, which adjusts adaptively the lag of the estimator proposed in [Olsson, J. and Douc, R. (2019). Numerically stable online estimation of variance in particle filters. Bernoulli, 25(2), pp. 1504-1535] applies to very general distribution flows and particle filters, including auxiliary particle filters with adaptive resampling. The algorithm operates entirely online, in the sense that it is able to monitor the variance of the particle filter in real time and with, on the average, constant computational complexity and memory requirements per iteration. Crucially, it does not require the calibration of any algorithmic parameter. Estimating the variance only on the basis of the genealogy of the propagated particle cloud, without additional simulations, the routine requires only minor code additions to the underlying particle algorithm. Finally, we prove that the ALVar estimator is consistent for the true asymptotic variance as the number of particles tends to infinity and illustrate numerically its superiority to existing approaches.
Deep operator learning has emerged as a promising tool for reduced-order modelling and PDE model discovery. Leveraging the expressive power of deep neural networks, especially in high dimensions, such methods learn the mapping between functional state variables. While proposed methods have assumed noise only in the dependent variables, experimental and numerical data for operator learning typically exhibit noise in the independent variables as well, since both variables represent signals that are subject to measurement error. In regression on scalar data, failure to account for noisy independent variables can lead to biased parameter estimates. With noisy independent variables, linear models fitted via ordinary least squares (OLS) will show attenuation bias, wherein the slope will be underestimated. In this work, we derive an analogue of attenuation bias for linear operator regression with white noise in both the independent and dependent variables. In the nonlinear setting, we computationally demonstrate underprediction of the action of the Burgers operator in the presence of noise in the independent variable. We propose error-in-variables (EiV) models for two operator regression methods, MOR-Physics and DeepONet, and demonstrate that these new models reduce bias in the presence of noisy independent variables for a variety of operator learning problems. Considering the Burgers operator in 1D and 2D, we demonstrate that EiV operator learning robustly recovers operators in high-noise regimes that defeat OLS operator learning. We also introduce an EiV model for time-evolving PDE discovery and show that OLS and EiV perform similarly in learning the Kuramoto-Sivashinsky evolution operator from corrupted data, suggesting that the effect of bias in OLS operator learning depends on the regularity of the target operator.