亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While open-source software has enabled significant levels of reuse to speed up software development, it has also given rise to the dreadful dependency hell that all software practitioners face on a regular basis. This article provides a catalogue of dependency-related challenges that come with relying on OSS packages or libraries. The catalogue is based on a review of the abundant scientific literature on empirical research that has been conducted to understand, quantify and overcome these challenges. Our results can be used as a starting point for junior and senior researchers as well as practitioners that would like to learn more about research advances in dealing with the challenges that come with the dependency networks of large OSS package registries.

相關內容

Academic research in static analysis produces software implementations. These implementations are time-consuming to develop and some need to be maintained in order to enable building further research upon the implementation. While necessary, these processes can be quickly challenging. This article documents the tools and techniques we have come up with to simplify the maintenance of Mopsa since 2017. Mopsa is a static analysis platform that aims at being sound. First, we describe an automated way to measure precision that does not require any baseline of true bugs obtained by manually inspecting the results. Further, it improves transparency of the analysis, and helps discovering regressions during continuous integration. Second, we have taken inspiration from standard tools observing the concrete execution of a program to design custom tools observing the abstract execution of the analyzed program itself, such as abstract debuggers and profilers. Finally, we report on some cases of automated testcase reduction.

Quantum software is a key enabler for the revolutionary applications promised by Quantum Computing (QC), a field poised to transform industries and attract significant investment. However, quantum software engineering (QSE) faces unique ethical challenges that must be addressed early to ensure responsible and equitable development. This vision paper explores the role of ethics and specifically diversity and inclusion (D&I) considerations in QSE, emphasising the importance of embedding these principles throughout the quantum software lifecycle. Neglecting D&I could lead to power imbalances, algorithmic biases, and limited innovation, ultimately hindering QC's potential to benefit society equitably. By drawing lessons from classical software and artificial intelligence, we discuss our vision for integrating D&I into QSE, for a more transparent, fair, and accountable future for quantum technologies. This paper aims to initiate discussion within the research community and lay the foundation for the ethical development of quantum software that promotes social equity.

As object detection techniques continue to evolve, understanding their relationships with complementary visual tasks becomes crucial for optimising model architectures and computational resources. This paper investigates the correlations between object detection accuracy and two fundamental visual tasks: depth prediction and visual saliency prediction. Through comprehensive experiments using state-of-the-art models (DeepGaze IIE, Depth Anything, DPT-Large, and Itti's model) on COCO and Pascal VOC datasets, we find that visual saliency shows consistently stronger correlations with object detection accuracy (mA$\rho$ up to 0.459 on Pascal VOC) compared to depth prediction (mA$\rho$ up to 0.283). Our analysis reveals significant variations in these correlations across object categories, with larger objects showing correlation values up to three times higher than smaller objects. These findings suggest incorporating visual saliency features into object detection architectures could be more beneficial than depth information, particularly for specific object categories. The observed category-specific variations also provide insights for targeted feature engineering and dataset design improvements, potentially leading to more efficient and accurate object detection systems.

Static verification is a powerful method for enhancing software quality, but it demands significant human labor and resources. This is particularly true of static verifiers that reason about heap manipulating programs using an ownership logic. LLMs have shown promise in a number of software engineering activities, including code generation, test generation, proof generation for theorem provers, and specification generation for static verifiers. However, prior work has not explored how well LLMs can perform specification generation for specifications based in an ownership logic, such as separation logic. To address this gap, this paper explores the effectiveness of large language models (LLMs), specifically OpenAI's GPT models, in generating fully correct specifications based on separation logic for static verification of human-written programs in VeriFast. Our first experiment employed traditional prompt engineering and the second used Chain-of-Thought (CoT) Prompting to identify and address common errors generated across the GPT models. The results indicate that GPT models can successfully generate specifications for verifying heap manipulating code with VeriFast. Furthermore, while CoT prompting significantly reduces syntax errors generated by the GPT models, it does not greatly improve verification error rates compared to prompt engineering.

This study investigates the impact of integrating DevSecOps and Generative Artificial Intelligence (GAI) on software delivery performance within technology firms. Utilizing a qualitative research methodology, the research involved semi-structured interviews with industry practitioners and analysis of case studies from organizations that have successfully implemented these methodologies. The findings reveal significant enhancements in research and development (R&D) efficiency, improved source code management, and heightened software quality and security. The integration of GAI facilitated automation of coding tasks and predictive analytics, while DevSecOps ensured that security measures were embedded throughout the development lifecycle. Despite the promising results, the study identifies gaps related to the generalizability of the findings due to the limited sample size and the qualitative nature of the research. This paper contributes valuable insights into the practical implementation of DevSecOps and GAI, highlighting their potential to transform software delivery processes in technology firms. Future research directions include quantitative assessments of the impact on specific business outcomes and comparative studies across different industries.

The increasing interest in autonomous driving systems has highlighted the need for an in-depth analysis of human driving behavior in diverse scenarios. Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices and ensure seamless integration into human-dominated environments. This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets, including Argoverse 2, nuPlan, Lyft, and DeepUrban. By defining and leveraging existing safety and behavior-related metrics, such as time to collision, adherence to speed limits, and interactions with other traffic participants, we aim to provide a comprehensive understanding of each datasets strengths and limitations. Our analysis focuses on the distribution of data samples, identifying noise, outliers, and undesirable behaviors exhibited by human drivers in both the training and validation sets. The results underscore the need for applying robust filtering techniques to certain datasets due to high levels of noise and the presence of such undesirable behaviors.

The sustainability of open source software (OSS) projects hinges on contributor retention. Interpersonal challenges can inhibit a feeling of welcomeness among contributors, particularly from underrepresented groups, which impacts their decision to continue with the project. How much this impact is, varies among individuals, underlining the importance of a thorough understanding of their effects. Here, we investigate the effects of interpersonal challenges on the sense of welcomeness among diverse populations within OSS, through the diversity lenses of gender, race, and (dis)ability. We analyzed the large-scale Linux Foundation Diversity and Inclusion survey (n = 706) to model a theoretical framework linking interpersonal challenges with the sense of welcomeness through Structural Equation Models Partial Least Squares (PLS-SEM). We then examine the model to identify the impact of these challenges on different demographics through Multi-Group Analysis (MGA). Finally, we conducted a regression analysis to investigate how differently people from different demographics experience different types of interpersonal challenges. Our findings confirm the negative association between interpersonal challenges and the feeling of welcomeness in OSS, with this relationship being more pronounced among gender minorities and people with disabilities. We found that different challenges have unique impacts on how people feel welcomed, with variations across gender, race, and disability groups. We also provide evidence that people from gender minorities and with disabilities are more likely to experience interpersonal challenges than their counterparts, especially when we analyze stalking, sexual harassment, and doxxing. Our insights benefit OSS communities, informing potential strategies to improve the landscape of interpersonal relationships, ultimately fostering more inclusive and welcoming communities.

The rapid development of the Internet of Things (IoT) has enabled novel user-centred applications, including many in safety-critical areas such as healthcare, smart environment security, and emergency response systems. The diversity in IoT manufacturers, standards, and devices creates a combinatorial explosion of such deployment scenarios, leading to increased security and safety threats due to the difficulty of managing such heterogeneity. In almost every IoT deployment, wireless gateways are crucial for interconnecting IoT devices and providing services, yet they are vulnerable to external threats and serve as key entry points for large-scale IoT attacks. Memory-based vulnerabilities are among the most serious threats in software, with no universal solution yet available. Legacy memory protection mechanisms, such as canaries, RELRO, NX, and Fortify, have enhanced memory safety but remain insufficient for comprehensive protection. Emerging technologies like ARM-MTE, CHERI, and Rust are based on more universal and robust Secure-by-Design (SbD) memory safety principles, yet each entails different trade-offs in hardware or code modifications. Given the challenges of balancing security levels with associated overheads in IoT systems, this paper explores the impact of memory safety on the IoT domain through an empirical large-scale analysis of memory-related vulnerabilities in modern wireless gateways. Our results show that memory vulnerabilities constitute the majority of IoT gateway threats, underscoring the necessity for SbD solutions, with the choice of memory-protection technology depending on specific use cases and associated overheads.

Despite extensive efforts to create fairer machine learning (ML) datasets, there remains a limited understanding of the practical aspects of dataset curation. Drawing from interviews with 30 ML dataset curators, we present a comprehensive taxonomy of the challenges and trade-offs encountered throughout the dataset curation lifecycle. Our findings underscore overarching issues within the broader fairness landscape that impact data curation. We conclude with recommendations aimed at fostering systemic changes to better facilitate fair dataset curation practices.

Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.

北京阿比特科技有限公司