A species that, coming from a source population, appears in a new environment where it was not present before is named alien. Due to the harm it poses to biodiversity and the expenses associated with its control, the phenomenon of alien species invasions is currently under careful examination. Although the presence of a considerable literature on the subject, the formulation of a dedicated statistical model has been deemed essential. The objective is to overcome current computational constraints while also correctly accounting for the dynamics behind the spread of alien species. A first record can be seen as a relational event, where the species (the sender) reaches a region (the receiver) for the first time in a certain year. As a result, whenever an alien species is introduced, the relational event graph adds a time-stamped edge. Besides potentially time-varying exogenous and endogenous covariates, our smooth relational event model (REM) also incorporates time-varying and random effects to explain the invasion rate. Particularly, we aim to track temporal variations in impacts' direction and magnitude of the ecological, socioeconomic, historical, and cultural forces at work. Network structures of particular interest (such as species' co-invasion affinity) are inspected as well. Our inference procedure relies on case-control sampling, yielding the same likelihood as that of a logistic regression. Due to the smooth nature of the incorporated effects, we may fit a generalised additive model where random effects are also estimated as 0-dimensional splines. The consequent computational advantage makes it possible to simultaneously examine many taxonomies. We explore how vascular plants and insects behave together. The goodness of fit of the smooth REM may be evaluated by means of test statistics computed as region-specific sums of martingale-residuals.
Restricted mean survival time (RMST) is an intuitive summary statistic for time-to-event random variables, and can be used for measuring treatment effects. Compared to hazard ratio, its estimation procedure is robust against the non-proportional hazards assumption. We propose nonparametric Bayeisan (BNP) estimators for RMST using a dependent stick-breaking process prior mixture model that adjusts for mixed-type covariates. The proposed Bayesian estimators can yield both group-level causal estimate and subject-level predictions. Besides, we propose a novel dependent stick-breaking process prior that on average results in narrower credible intervals while maintaining similar coverage probability compared to a dependent probit stick-breaking process prior. We conduct simulation studies to investigate the performance of the proposed BNP RMST estimators compared to existing frequentist approaches and under different Bayesian modeling choices. The proposed framework is applied to estimate the treatment effect of an immuno therapy among KRAS wild-type colorectal cancer patients.
Recent years have seen increasing employment of decision intelligence in electronic design automation (EDA), which aims to reduce the manual efforts and boost the design closure process in modern toolflows. However, existing approaches either require a large number of labeled data and expensive training efforts, or are limited in practical EDA toolflow integration due to computation overhead. This paper presents a generic end-to-end sequential decision making framework FlowTune for synthesis tooflow optimization, with a novel high-performance domain-specific, multi-stage multi-armed bandit (MAB) approach. This framework addresses optimization problems on Boolean optimization problems such as a) And-Inv-Graphs (# nodes), b) Conjunction Normal Form (CNF) minimization (# clauses) for Boolean Satisfiability; logic synthesis and technology mapping problems such as c) post static timing analysis (STA) delay and area optimization for standard-cell technology mapping, and d) FPGA technology mapping for 6-in LUT architectures. Moreover, we demonstrate the high extnsibility and generalizability of the proposed domain-specific MAB approach with end-to-end FPGA design flow, evaluated at post-routing stage, with two different FPGA backend tools (OpenFPGA and VPR) and two different logic synthesis representations (AIGs and MIGs). FlowTune is fully integrated with ABC [1], Yosys [2], VTR [3], LSOracle [4], OpenFPGA [5], and industrial tools, and is released publicly. The experimental results conducted on various design stages in the flow all demonstrate that our framework outperforms both hand-crafted flows [1] and ML explored flows [6], [7] in quality of results, and is orders of magnitude faster compared to ML-based approaches.
In recent years, social media companies have grappled with defining and enforcing content moderation policies surrounding political content on their platforms, due in part to concerns about political bias, disinformation, and polarization. These policies have taken many forms, including disallowing political advertising, limiting the reach of political topics, fact-checking political claims, and enabling users to hide political content altogether. However, implementing these policies requires human judgement to label political content, and it is unclear how well human labelers perform at this task, or whether biases affect this process. Therefore, in this study we experimentally evaluate the feasibility and practicality of using crowd workers to identify political content, and we uncover biases that make it difficult to identify this content. Our results problematize crowds composed of seemingly interchangeable workers, and provide preliminary evidence that aggregating judgements from heterogeneous workers may help mitigate political biases. In light of these findings, we identify strategies to achieving fairer labeling outcomes, while also better supporting crowd workers at this task and potentially mitigating biases.
Propensity score matching (PSM) and augmented inverse propensity weighting (AIPW) are widely used in observational studies to estimate causal effects. The two approaches present complementary features. The AIPW estimator is doubly robust and locally efficient but can be unstable when the propensity scores are close to zero or one due to weighting by the inverse of the propensity score. On the other hand, PSM circumvents the instability of propensity score weighting but it hinges on the correctness of the propensity score model and cannot attain the semiparametric efficiency bound. Besides, the fixed number of matches, K, renders PSM nonsmooth and thus invalidates standard nonparametric bootstrap inference. This article presents novel augmented match weighted (AMW) estimators that combine the advantages of matching and weighting estimators. AMW adheres to the form of AIPW for its double robustness and local efficiency but it mitigates the instability due to weighting. We replace inverse propensity weights with matching weights resulting from PSM with unfixed K. Meanwhile, we propose a new cross-validation procedure to select K that minimizes the mean squared error anchored around an unbiased estimator of the causal estimand. Besides, we derive the limiting distribution for the AMW estimators showing that they enjoy the double robustness property and can achieve the semiparametric efficiency bound if both nuisance models are correct. As a byproduct of unfixed K which smooths the AMW estimators, nonparametric bootstrap can be adopted for variance estimation and inference. Furthermore, simulation studies and real data applications support that the AMW estimators are stable with extreme propensity scores and their variances can be obtained by naive bootstrap.
Cross-lingual summarization consists of generating a summary in one language given an input document in a different language, allowing for the dissemination of relevant content across speakers of other languages. However, this task remains challenging, mainly because of the need for cross-lingual datasets and the compounded difficulty of summarizing and translating. This work presents $\mu$PLAN, an approach to cross-lingual summarization that uses an intermediate planning step as a cross-lingual bridge. We formulate the plan as a sequence of entities that captures the conceptualization of the summary, i.e. identifying the salient content and expressing in which order to present the information, separate from the surface form. Using a multilingual knowledge base, we align the entities to their canonical designation across languages. $\mu$PLAN models first learn to generate the plan and then continue generating the summary conditioned on the plan and the input. We evaluate our methodology on the XWikis dataset on cross-lingual pairs across four languages and demonstrate that this planning objective achieves state-of-the-art performance in terms of ROUGE and faithfulness scores. Moreover, this planning approach improves the zero-shot transfer to new cross-lingual language pairs compared to non-planning baselines.
Introduction: The COVID-19 pandemic highlighted the importance of making epidemiological data and scientific insights easily accessible and explorable for public health agencies, the general public, and researchers. State-of-the-art approaches for sharing data and insights included regularly updated reports and web dashboards. However, they face a trade-off between the simplicity and flexibility of data exploration. With the capabilities of recent large language models (LLMs) such as GPT-4, this trade-off can be overcome. Results: We developed the chatbot "GenSpectrum Chat" (//cov-spectrum.org/chat) which uses GPT-4 as the underlying large language model (LLM) to explore SARS-CoV-2 genomic sequencing data. Out of 500 inputs from real-world users, the chatbot provided a correct answer for 453 prompts; an incorrect answer for 13 prompts, and no answer although the question was within scope for 34 prompts. We also tested the chatbot with inputs from 10 different languages, and despite being provided solely with English instructions and examples, it successfully processed prompts in all tested languages. Conclusion: LLMs enable new ways of interacting with information systems. In the field of public health, GenSpectrum Chat can facilitate the analysis of real-time pathogen genomic data. With our chatbot supporting interactive exploration in different languages, we envision quick and direct access to the latest evidence for policymakers around the world.
Dynamic multi-objective optimisation (DMO) handles optimisation problems with multiple (often conflicting) objectives in varying environments. Such problems pose various challenges to evolutionary algorithms, which have popularly been used to solve complex optimisation problems, due to their dynamic nature and resource restrictions in changing environments. This paper proposes vector autoregressive evolution (VARE) consisting of vector autoregression (VAR) and environment-aware hypermutation to address environmental changes in DMO. VARE builds a VAR model that considers mutual relationship between decision variables to effectively predict the moving solutions in dynamic environments. Additionally, VARE introduces EAH to address the blindness of existing hypermutation strategies in increasing population diversity in dynamic scenarios where predictive approaches are unsuitable. A seamless integration of VAR and EAH in an environment-adaptive manner makes VARE effective to handle a wide range of dynamic environments and competitive with several popular DMO algorithms, as demonstrated in extensive experimental studies. Specially, the proposed algorithm is computationally 50 times faster than two widely-used algorithms (i.e., TrDMOEA and MOEA/D-SVR) while producing significantly better results.
In many modern data sets, High dimension low sample size (HDLSS) data is prevalent in many fields of studies. There has been an increased focus recently on using machine learning and statistical methods to mine valuable information out of these data sets. Thus, there has been an increased interest in efficient learning in high dimensions. Naturally, as the dimension of the input data increases, the learning task will become more difficult, due to increasing computational and statistical complexities. This makes it crucial to overcome the curse of dimensionality in a given dataset, within a reasonable time frame, in a bid to obtain the insights required to keep a competitive edge. To solve HDLSS problems, classical methods such as support vector machines can be utilised to alleviate data piling at the margin. However, when we question geometric domains and their assumptions on input data, we are naturally lead to convex optimisation problems and this gives rise to the development of solutions like distance weighted discrimination (DWD), which can be modelled as a second-order cone programming problem and solved by interior-point methods when sample size and feature dimensions of the data is moderate. In this paper, our focus is on designing an even more scalable and robust algorithm for solving large-scale generalized DWD problems.
Inferring protocol formats is critical for many security applications. However, existing format-inference techniques often miss many formats, because almost all of them are in a fashion of dynamic analysis and rely on a limited number of network packets to drive their analysis. If a feature is not present in the input packets, the feature will be missed in the resulting formats. We develop a novel static program analysis for format inference. It is well-known that static analysis does not rely on any input packets and can achieve high coverage by scanning every piece of code. However, for efficiency and precision, we have to address two challenges, namely path explosion and disordered path constraints. To this end, our approach uses abstract interpretation to produce a novel data structure called the abstract format graph. It delimits precise but costly operations to only small regions, thus ensuring precision and efficiency at the same time. Our inferred formats are of high coverage and precisely specify both field boundaries and semantic constraints among packet fields. Our evaluation shows that we can infer formats for a protocol in one minute with >95% precision and recall, much better than four baseline techniques. Our inferred formats can substantially enhance existing protocol fuzzers, improving the coverage by 20% to 260% and discovering 53 zero-days with 47 assigned CVEs. We also provide case studies of adopting our inferred formats in other security applications including traffic auditing and intrusion detection.