亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A linear layout of a graph $ G $ consists of a linear order $\prec$ of the vertices and a partition of the edges. A part is called a queue (stack) if no two edges nest (cross), that is, two edges $ (v,w) $ and $ (x,y) $ with $ v \prec x \prec y \prec w $ ($ v \prec x \prec w \prec y $) may not be in the same queue (stack). The best known lower and upper bounds for the number of queues needed for planar graphs are 4 [Alam et al., Algorithmica 2020] and 42 [Bekos et al., Algorithmica 2022], respectively. While queue layouts of special classes of planar graphs have received increased attention following the breakthrough result of [Dujmovi\'c et al., J. ACM 2020], the meaningful class of bipartite planar graphs has remained elusive so far, explicitly asked for by Bekos et al. In this paper we investigate bipartite planar graphs and give an improved upper bound of 28 by refining existing techniques. In contrast, we show that two queues or one queue together with one stack do not suffice; the latter answers an open question by Pupyrev [GD 2018]. We further investigate subclasses of bipartite planar graphs and give improved upper bounds; in particular we construct 5-queue layouts for 2-degenerate quadrangulations.

相關內容

In this paper, we study the following problem. Consider a setting where a proposal is offered to the vertices of a given network $G$, and the vertices must conduct a vote and decide whether to accept the proposal or reject it. Each vertex $v$ has its own valuation of the proposal; we say that $v$ is ``happy'' if its valuation is positive (i.e., it expects to gain from adopting the proposal) and ``sad'' if its valuation is negative. However, vertices do not base their vote merely on their own valuation. Rather, a vertex $v$ is a \emph{proponent} of the proposal if a majority of its neighbors are happy with it and an \emph{opponent} in the opposite case. At the end of the vote, the network collectively accepts the proposal whenever a majority of its vertices are proponents. We study this problem on regular graphs with loops. Specifically, we consider the class ${\mathcal G}_{n|d|h}$ of $d$-regular graphs of odd order $n$ with all $n$ loops and $h$ happy vertices. We are interested in establishing necessary and sufficient conditions for the class ${\mathcal G}_{n|d|h}$ to contain a labeled graph accepting the proposal, as well as conditions to contain a graph rejecting the proposal. We also discuss connections to the existing literature, including that on majority domination, and investigate the properties of the obtained conditions.

In the Planar Disjoint Paths problem, one is given an undirected planar graph with a set of $k$ vertex pairs $(s_i,t_i)$ and the task is to find $k$ pairwise vertex-disjoint paths such that the $i$-th path connects $s_i$ to $t_i$. We study the problem through the lens of kernelization, aiming at efficiently reducing the input size in terms of a parameter. We show that Planar Disjoint Paths does not admit a polynomial kernel when parameterized by $k$ unless coNP $\subseteq$ NP/poly, resolving an open problem by [Bodlaender, Thomass{\'e}, Yeo, ESA'09]. Moreover, we rule out the existence of a polynomial Turing kernel unless the WK-hierarchy collapses. Our reduction carries over to the setting of edge-disjoint paths, where the kernelization status remained open even in general graphs. On the positive side, we present a polynomial kernel for Planar Disjoint Paths parameterized by $k + tw$, where $tw$ denotes the treewidth of the input graph. As a consequence of both our results, we rule out the possibility of a polynomial-time (Turing) treewidth reduction to $tw= k^{O(1)}$ under the same assumptions. To the best of our knowledge, this is the first hardness result of this kind. Finally, combining our kernel with the known techniques [Adler, Kolliopoulos, Krause, Lokshtanov, Saurabh, Thilikos, JCTB'17; Schrijver, SICOMP'94] yields an alternative (and arguably simpler) proof that Planar Disjoint Paths can be solved in time $2^{O(k^2)}\cdot n^{O(1)}$, matching the result of [Lokshtanov, Misra, Pilipczuk, Saurabh, Zehavi, STOC'20].

We define a $q$-linear path in a hypergraph $H$ as a sequence $(e_1,\ldots,e_L)$ of edges of $H$ such that $|e_i \cap e_{i+1}| \in [\![1,q]\!]$ and $e_i \cap e_j=\varnothing$ if $|i-j|>1$. In this paper, we study the connected components associated to these paths when $q=k-2$ where $k$ is the rank of $H$. If $k=3$ then $q=1$ which coincides with the well-known notion of linear path or loose path. We describe the structure of the connected components, using an algorithmic proof which shows that the connected components can be computed in polynomial time. We then mention two consequences of our algorithmic result. The first one is that deciding the winner of the Maker-Breaker game on a hypergraph of rank 3 can be done in polynomial time. The second one is that tractable cases for the NP-complete problem of "Paths Avoiding Forbidden Pairs" in a graph can be deduced from the recognition of a special type of line graph of a hypergraph.

Parametricity is a property of the syntax of type theory implying e.g. that there is only one function having the type of the polymorphic identity function. Parametricity is usually proven externally, and does not hold internally. Internalising it is difficult because once there is a term witnessing parametricity, it also has to be parametric itself and this results in the appearance of higher dimensional cubes. In previous theories with internal parametricity, either an explicit syntax for higher cubes is present or the theory is extended with a new sort for the interval. In this paper we present a type theory with internal parametricity which is a simple extension of Martin-L\"of type thoery: there are a few new type formers, term formers and equations. Geometry is not explicit in this syntax, but emergent: the new operations and equations only refer to objects up to dimension 3. We show that this theory is modelled by presheaves over the BCH cube category. Fibrancy conditions are not needed because we use span-based rather than relational parametricity. We define a gluing model for this theory implying that external parametricity and canonicity hold. The theory can be seen as a special case of a new kind of modal type theory, and it is the simplest setting in which the computational properties of higher observational type theory can be demonstrated.

Recent reinforcement learning (RL) methods have achieved success in various domains. However, multi-agent RL (MARL) remains a challenge in terms of decentralization, partial observability and scalability to many agents. Meanwhile, collective behavior requires resolution of the aforementioned challenges, and remains of importance to many state-of-the-art applications such as active matter physics, self-organizing systems, opinion dynamics, and biological or robotic swarms. Here, MARL via mean field control (MFC) offers a potential solution to scalability, but fails to consider decentralized and partially observable systems. In this paper, we enable decentralized behavior of agents under partial information by proposing novel models for decentralized partially observable MFC (Dec-POMFC), a broad class of problems with permutation-invariant agents allowing for reduction to tractable single-agent Markov decision processes (MDP) with single-agent RL solution. We provide rigorous theoretical results, including a dynamic programming principle, together with optimality guarantees for Dec-POMFC solutions applied to finite swarms of interest. Algorithmically, we propose Dec-POMFC-based policy gradient methods for MARL via centralized training and decentralized execution, together with policy gradient approximation guarantees. In addition, we improve upon state-of-the-art histogram-based MFC by kernel methods, which is of separate interest also for fully observable MFC. We evaluate numerically on representative collective behavior tasks such as adapted Kuramoto and Vicsek swarming models, being on par with state-of-the-art MARL. Overall, our framework takes a step towards RL-based engineering of artificial collective behavior via MFC.

Computing a shortest path between two nodes in an undirected unweighted graph is among the most basic algorithmic tasks. Breadth first search solves this problem in linear time, which is clearly also a lower bound in the worst case. However, several works have shown how to solve this problem in sublinear time in expectation when the input graph is drawn from one of several classes of random graphs. In this work, we extend these results by giving sublinear time shortest path (and short path) algorithms for expander graphs. We thus identify a natural deterministic property of a graph (that is satisfied by typical random regular graphs) which suffices for sublinear time shortest paths. The algorithms are very simple, involving only bidirectional breadth first search and short random walks. We also complement our new algorithms by near-matching lower bounds.

We consider a natural generalization of Vertex Cover: the Subset Vertex Cover problem, which is to decide for a graph $G=(V,E)$, a subset $T \subseteq V$ and integer $k$, if $V$ has a subset $S$ of size at most $k$, such that $S$ contains at least one end-vertex of every edge incident to a vertex of $T$. A graph is $H$-free if it does not contain $H$ as an induced subgraph. We solve two open problems from the literature by proving that Subset Vertex Cover is NP-complete on subcubic (claw,diamond)-free planar graphs and on $2$-unipolar graphs, a subclass of $2P_3$-free weakly chordal graphs. Our results show for the first time that Subset Vertex Cover is computationally harder than Vertex Cover (under P $\neq$ NP). We also prove new polynomial time results. We first give a dichotomy on graphs where $G[T]$ is $H$-free. Namely, we show that Subset Vertex Cover is polynomial-time solvable on graphs $G$, for which $G[T]$ is $H$-free, if $H = sP_1 + tP_2$ and NP-complete otherwise. Moreover, we prove that Subset Vertex Cover is polynomial-time solvable for $(sP_1 + P_2 + P_3)$-free graphs and bounded mim-width graphs. By combining our new results with known results we obtain a partial complexity classification for Subset Vertex Cover on $H$-free graphs.

Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.

Deep learning methods for graphs achieve remarkable performance on many node-level and graph-level prediction tasks. However, despite the proliferation of the methods and their success, prevailing Graph Neural Networks (GNNs) neglect subgraphs, rendering subgraph prediction tasks challenging to tackle in many impactful applications. Further, subgraph prediction tasks present several unique challenges, because subgraphs can have non-trivial internal topology, but also carry a notion of position and external connectivity information relative to the underlying graph in which they exist. Here, we introduce SUB-GNN, a subgraph neural network to learn disentangled subgraph representations. In particular, we propose a novel subgraph routing mechanism that propagates neural messages between the subgraph's components and randomly sampled anchor patches from the underlying graph, yielding highly accurate subgraph representations. SUB-GNN specifies three channels, each designed to capture a distinct aspect of subgraph structure, and we provide empirical evidence that the channels encode their intended properties. We design a series of new synthetic and real-world subgraph datasets. Empirical results for subgraph classification on eight datasets show that SUB-GNN achieves considerable performance gains, outperforming strong baseline methods, including node-level and graph-level GNNs, by 12.4% over the strongest baseline. SUB-GNN performs exceptionally well on challenging biomedical datasets when subgraphs have complex topology and even comprise multiple disconnected components.

In recent years, DBpedia, Freebase, OpenCyc, Wikidata, and YAGO have been published as noteworthy large, cross-domain, and freely available knowledge graphs. Although extensively in use, these knowledge graphs are hard to compare against each other in a given setting. Thus, it is a challenge for researchers and developers to pick the best knowledge graph for their individual needs. In our recent survey, we devised and applied data quality criteria to the above-mentioned knowledge graphs. Furthermore, we proposed a framework for finding the most suitable knowledge graph for a given setting. With this paper we intend to ease the access to our in-depth survey by presenting simplified rules that map individual data quality requirements to specific knowledge graphs. However, this paper does not intend to replace our previously introduced decision-support framework. For an informed decision on which KG is best for you we still refer to our in-depth survey.

北京阿比特科技有限公司