We define a $q$-linear path in a hypergraph $H$ as a sequence $(e_1,\ldots,e_L)$ of edges of $H$ such that $|e_i \cap e_{i+1}| \in [\![1,q]\!]$ and $e_i \cap e_j=\varnothing$ if $|i-j|>1$. In this paper, we study the connected components associated to these paths when $q=k-2$ where $k$ is the rank of $H$. If $k=3$ then $q=1$ which coincides with the well-known notion of linear path or loose path. We describe the structure of the connected components, using an algorithmic proof which shows that the connected components can be computed in polynomial time. We then mention two consequences of our algorithmic result. The first one is that deciding the winner of the Maker-Breaker game on a hypergraph of rank 3 can be done in polynomial time. The second one is that tractable cases for the NP-complete problem of "Paths Avoiding Forbidden Pairs" in a graph can be deduced from the recognition of a special type of line graph of a hypergraph.
This paper gives a self-contained introduction to the Hilbert projective metric $\mathcal{H}$ and its fundamental properties, with a particular focus on the space of probability measures. We start by defining the Hilbert pseudo-metric on convex cones, focusing mainly on dual formulations of $\mathcal{H}$ . We show that linear operators on convex cones contract in the distance given by the hyperbolic tangent of $\mathcal{H}$, which in particular implies Birkhoff's classical contraction result for $\mathcal{H}$. Turning to spaces of probability measures, where $\mathcal{H}$ is a metric, we analyse the dual formulation of $\mathcal{H}$ in the general setting, and explore the geometry of the probability simplex under $\mathcal{H}$ in the special case of discrete probability measures. Throughout, we compare $\mathcal{H}$ with other distances between probability measures. In particular, we show how convergence in $\mathcal{H}$ implies convergence in total variation, $p$-Wasserstein distance, and any $f$-divergence. Furthermore, we derive a novel sharp bound for the total variation between two probability measures in terms of their Hilbert distance.
This short note shows the superconvergence of an $H(\mathrm{grad}\,\mathrm{curl})$-nonconforming brick element very recently introduced in [17] for the quad-curl problem. The supercloseness is based on proper modifications for both the interpolation and the discrete formulation, leading to an $O(h^2)$ superclose order in the discrete $H(\mathrm{grad}\,\mathrm{curl})$ norm. Moreover, we propose a suitable postprocessing method to ensure the global superconvergence. Numerical results verify our theory.
Challenges with data in the big-data era include (i) the dimension $p$ is often larger than the sample size $n$ (ii) outliers or contaminated points are frequently hidden and more difficult to detect. Challenge (i) renders most conventional methods inapplicable. Thus, it attracts tremendous attention from statistics, computer science, and bio-medical communities. Numerous penalized regression methods have been introduced as modern methods for analyzing high-dimensional data. Disproportionate attention has been paid to the challenge (ii) though. Penalized regression methods can do their job very well and are expected to handle the challenge (ii) simultaneously. Most of them, however, can break down by a single outlier (or single adversary contaminated point) as revealed in this article. The latter systematically examines leading penalized regression methods in the literature in terms of their robustness, provides quantitative assessment, and reveals that most of them can break down by a single outlier. Consequently, a novel robust penalized regression method based on the least sum of squares of depth trimmed residuals is proposed and studied carefully. Experiments with simulated and real data reveal that the newly proposed method can outperform some leading competitors in estimation and prediction accuracy in the cases considered.
A $hole$ is an induced cycle of length at least four, and an odd hole is a hole of odd length. A {\em fork} is a graph obtained from $K_{1,3}$ by subdividing an edge once. An {\em odd balloon} is a graph obtained from an odd hole by identifying respectively two consecutive vertices with two leaves of $K_{1, 3}$. A {\em gem} is a graph that consists of a $P_4$ plus a vertex adjacent to all vertices of the $P_4$. A {\em butterfly} is a graph obtained from two traingles by sharing exactly one vertex. A graph $G$ is perfectly divisible if for each induced subgraph $H$ of $G$, $V(H)$ can be partitioned into $A$ and $B$ such that $H[A]$ is perfect and $\omega(H[B])<\omega(H)$. In this paper, we show that (odd balloon, fork)-free graphs are perfectly divisible (this generalizes some results of Karthick {\em et al}). As an application, we show that $\chi(G)\le\binom{\omega(G)+1}{2}$ if $G$ is (fork, gem)-free or (fork, butterfly)-free.
Given a matrix-valued function $\mathcal{F}(\lambda)=\sum_{i=1}^d f_i(\lambda) A_i$, with complex matrices $A_i$ and $f_i(\lambda)$ analytic functions for $i=1,\ldots,d$, we discuss a method for the numerical approximation of the distance to singularity for $\mathcal{F}(\lambda)$. The closest matrix-valued function $\widetilde {\mathcal{F}}(\lambda)$ with respect to the Frobenius norm is approximated using an iterative method. The condition of singularity on the matrix-valued function is translated into a numerical constraint for a suitable minimization problem. Unlike the case of matrix polynomials, in the general setting of matrix-valued functions the main issue is that the function $\det ( \widetilde{\mathcal{F}}(\lambda) )$ may have an infinite number of roots. The main feature of the numerical method consists in the possibility of extending it to different structures, such as sparsity patterns induced by the matrix coefficients.
We consider problems of minimizing functionals $\mathcal{F}$ of probability measures on the Euclidean space. To propose an accelerated gradient descent algorithm for such problems, we consider gradient flow of transport maps that give push-forward measures of an initial measure. Then we propose a deterministic accelerated algorithm by extending Nesterov's acceleration technique with momentum. This algorithm do not based on the Wasserstein geometry. Furthermore, to estimate the convergence rate of the accelerated algorithm, we introduce new convexity and smoothness for $\mathcal{F}$ based on transport maps. As a result, we can show that the accelerated algorithm converges faster than a normal gradient descent algorithm. Numerical experiments support this theoretical result.
Every large $k$-connected graph-minor induces a $k$-tangle in its ambient graph. The converse holds for $k\le 3$, but fails for $k\ge 4$. This raises the question whether `$k$-connected' can be relaxed to obtain a characterisation of $k$-tangles through highly cohesive graph-minors. We show that this can be achieved for $k=4$ by proving that internally 4-connected graphs have unique 4-tangles, and that every graph with a 4-tangle $\tau$ has an internally 4-connected minor whose unique 4-tangle lifts to~$\tau$.
Let $C$ be a linear code of length $n$ and dimension $k$ over the finite field $\mathbb{F}_{q^m}$. The trace code $\mathrm{Tr}(C)$ is a linear code of the same length $n$ over the subfield $\mathbb{F}_q$. The obvious upper bound for the dimension of the trace code over $\mathbb{F}_q$ is $mk$. If equality holds, then we say that $C$ has maximum trace dimension. The problem of finding the true dimension of trace codes and their duals is relevant for the size of the public key of various code-based cryptographic protocols. Let $C_{\mathbf{a}}$ denote the code obtained from $C$ and a multiplier vector $\mathbf{a}\in (\mathbb{F}_{q^m})^n$. In this paper, we give a lower bound for the probability that a random multiplier vector produces a code $C_{\mathbf{a}}$ of maximum trace dimension. We give an interpretation of the bound for the class of algebraic geometry codes in terms of the degree of the defining divisor. The bound explains the experimental fact that random alternant codes have minimal dimension. Our bound holds whenever $n\geq m(k+h)$, where $h\geq 0$ is the Singleton defect of $C$. For the extremal case $n=m(h+k)$, numerical experiments reveal a closed connection between the probability of having maximum trace dimension and the probability that a random matrix has full rank.
At STOC 2002, Eiter, Gottlob, and Makino presented a technique called ordered generation that yields an $n^{O(d)}$-delay algorithm listing all minimal transversals of an $n$-vertex hypergraph of degeneracy $d$. Recently at IWOCA 2019, Conte, Kant\'e, Marino, and Uno asked whether this XP-delay algorithm parameterized by $d$ could be made FPT-delay parameterized by $d$ and the maximum degree $\Delta$, i.e., an algorithm with delay $f(d,\Delta)\cdot n^{O(1)}$ for some computable function $f$. Moreover, as a first step toward answering that question, they note that the same delay is open for the intimately related problem of listing all minimal dominating sets in graphs. In this paper, we answer the latter question in the affirmative.
Given a hypergraph $\mathcal{H}$, the dual hypergraph of $\mathcal{H}$ is the hypergraph of all minimal transversals of $\mathcal{H}$. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, etc. In this paper we study conformality of dual hypergraphs. While we do not settle the computational complexity status of recognizing this property, we show that the problem is in co-NP and can be solved in polynomial time for hypergraphs of bounded dimension. In the special case of dimension $3$, we reduce the problem to $2$-Satisfiability. Our approach has an implication in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most $k$, for any fixed $k$.