Every large $k$-connected graph-minor induces a $k$-tangle in its ambient graph. The converse holds for $k\le 3$, but fails for $k\ge 4$. This raises the question whether `$k$-connected' can be relaxed to obtain a characterisation of $k$-tangles through highly cohesive graph-minors. We show that this can be achieved for $k=4$ by proving that internally 4-connected graphs have unique 4-tangles, and that every graph with a 4-tangle $\tau$ has an internally 4-connected minor whose unique 4-tangle lifts to~$\tau$.
A periodic temporal graph $\mathcal{G}=(G_0, G_1, \dots, G_{p-1})^*$ is an infinite periodic sequence of graphs $G_i=(V,E_i)$ where $G=(V,\cup_i E_i)$ is called the footprint. Recently, the arena where the Cops and Robber game is played has been extended from a graph to a periodic graph; in this case, the copnumber is also the minimum number of cops sufficient for capturing the robber. We study the connections and distinctions between the copnumber $c(\mathcal{G})$ of a periodic graph $\mathcal{G}$ and the copnumber $c(G)$ of its footprint $G$ and establish several facts. For instance, we show that the smallest periodic graph with $c(\mathcal{G}) = 3$ has at most $8$ nodes; in contrast, the smallest graph $G$ with $c(G) = 3$ has $10$ nodes. We push this investigation by generating multiple examples showing how the copnumbers of a periodic graph $\mathcal{G}$, the subgraphs $G_i$ and its footprint $G$ can be loosely tied. Based on these results, we derive upper bounds on the copnumber of a periodic graph from properties of its footprint such as its treewidth.
We give a strongly explicit construction of $\varepsilon$-approximate $k$-designs for the orthogonal group $\mathrm{O}(N)$ and the unitary group $\mathrm{U}(N)$, for $N=2^n$. Our designs are of cardinality $\mathrm{poly}(N^k/\varepsilon)$ (equivalently, they have seed length $O(nk + \log(1/\varepsilon)))$; up to the polynomial, this matches the number of design elements used by the construction consisting of completely random matrices.
A code $C \subseteq \{0, 1, 2\}^n$ of length $n$ is called trifferent if for any three distinct elements of $C$ there exists a coordinate in which they all differ. By $T(n)$ we denote the maximum cardinality of trifferent codes with length. $T(5)=10$ and $T(6)=13$ were recently determined. Here we determine $T(7)=16$, $T(8)=20$, and $T(9)=27$. For the latter case $n=9$ there also exist linear codes attaining the maximum possible cardinality $27$.
We describe a new dependent-rounding algorithmic framework for bipartite graphs. Given a fractional assignment $y$ of values to edges of graph $G = (U \cup V, E)$, the algorithms return an integral solution $Y$ such that each right-node $v \in V$ has at most one neighboring edge $f$ with $Y_f = 1$, and where the variables $Y_e$ also satisfy broad nonpositive-correlation properties. In particular, for any edges $e_1, e_2$ sharing a left-node $u \in U$, the variables $Y_{e_1}, Y_{e_2}$ have strong negative-correlation properties, i.e. the expectation of $Y_{e_1} Y_{e_2}$ is significantly below $y_{e_1} y_{e_2}$. This algorithm is based on generating negatively-correlated Exponential random variables and using them in a contention-resolution scheme inspired by an algorithm Im & Shadloo (2020). Our algorithm gives stronger and much more flexible negative correlation properties. Dependent rounding schemes with negative correlation properties have been used for approximation algorithms for job-scheduling on unrelated machines to minimize weighted completion times (Bansal, Srinivasan, & Svensson (2021), Im & Shadloo (2020), Im & Li (2023)). Using our new dependent-rounding algorithm, among other improvements, we obtain a $1.4$-approximation for this problem. This significantly improves over the prior $1.45$-approximation ratio of Im & Li (2023).
We consider the problem of finding edge-disjoint paths between given pairs of vertices in a sufficiently strong $d$-regular expander graph $G$ with $n$ vertices. In particular, we describe a deterministic, polynomial time algorithm which maintains an initially empty collection of edge-disjoint paths $\mathcal P$ in $G$ and fulfills any series of two types of requests: 1. Given two vertices $a$ and $b$ such that each appears as an endpoint in $O(d)$ paths in $\mathcal P$ and, additionally, $|\mathcal P| = O(n d / \log n)$, the algorithm finds a path of length at most $\log n$ connecting $a$ and $b$ which is edge-disjoint from all other paths in $\mathcal P$, and adds it to $\mathcal P$. 2. Remove a given path $P \in \mathcal{P}$ from $\mathcal{P}$. Importantly, each request is processed before seeing the next one. The upper bound on the length of found paths and the constraints are the best possible up to a constant factor. This establishes the first online algorithm for finding edge-disjoint paths in expanders which also allows removals, significantly strengthening a long list of previous results on the topic.
We present a semi-Lagrangian characteristic mapping method for the incompressible Euler equations on a rotating sphere. The numerical method uses a spatio-temporal discretization of the inverse flow map generated by the Eulerian velocity as a composition of sub-interval flows formed by $C^1$ spherical spline interpolants. This approximation technique has the capacity of resolving sub-grid scales generated over time without increasing the spatial resolution of the computational grid. The numerical method is analyzed and validated using standard test cases yielding third-order accuracy in the supremum norm. Numerical experiments illustrating the unique resolution properties of the method are performed and demonstrate the ability to reproduce the forward energy cascade at sub-grid scales by upsampling the numerical solution.
The $n$-vehicle exploration problem (NVEP) is a combinatorial optimization problem, which tries to find an optimal permutation of a fleet to maximize the length traveled by the last vehicle. NVEP has a fractional form of objective function, and its computational complexity of general case remains open. We show that Hamiltonian Path $\leq_P$ NVEP, and prove that NVEP is NP-complete.
We develop randomized matrix-free algorithms for estimating partial traces. Our algorithm improves on the typicality-based approach used in [T. Chen and Y-C. Cheng, Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems, J. Chem. Phys. 157, 064106 (2022)] by deflating important subspaces (e.g. corresponding to the low-energy eigenstates) explicitly. This results in a significant variance reduction for matrices with quickly decaying singular values. We then apply our algorithm to study the thermodynamics of several Heisenberg spin systems, particularly the entanglement spectrum and ergotropy.
We investigate the randomized decision tree complexity of a specific class of read-once threshold functions. A read-once threshold formula can be defined by a rooted tree, every internal node of which is labeled by a threshold function $T_k^n$ (with output 1 only when at least $k$ out of $n$ input bits are 1) and each leaf by a distinct variable. Such a tree defines a Boolean function in a natural way. We focus on the randomized decision tree complexity of such functions, when the underlying tree is a uniform tree with all its internal nodes labeled by the same threshold function. We prove lower bounds of the form $c(k,n)^d$, where $d$ is the depth of the tree. We also treat trees with alternating levels of AND and OR gates separately and show asymptotically optimal bounds, extending the known bounds for the binary case.
The deletion distance between two binary words $u,v \in \{0,1\}^n$ is the smallest $k$ such that $u$ and $v$ share a common subsequence of length $n-k$. A set $C$ of binary words of length $n$ is called a $k$-deletion code if every pair of distinct words in $C$ has deletion distance greater than $k$. In 1965, Levenshtein initiated the study of deletion codes by showing that, for $k\ge 1$ fixed and $n$ going to infinity, a $k$-deletion code $C\subseteq \{0,1\}^n$ of maximum size satisfies $\Omega_k(2^n/n^{2k}) \leq |C| \leq O_k( 2^n/n^k)$. We make the first asymptotic improvement to these bounds by showing that there exist $k$-deletion codes with size at least $\Omega_k(2^n \log n/n^{2k})$. Our proof is inspired by Jiang and Vardy's improvement to the classical Gilbert--Varshamov bounds. We also establish several related results on the number of longest common subsequences and shortest common supersequences of a pair of words with given length and deletion distance.