亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fully decentralised federated learning enables collaborative training of individual machine learning models on distributed devices on a communication network while keeping the training data localised. This approach enhances data privacy and eliminates both the single point of failure and the necessity for central coordination. Our research highlights that the effectiveness of decentralised federated learning is significantly influenced by the network topology of connected devices. We propose a strategy for uncoordinated initialisation of the artificial neural networks, which leverages the distribution of eigenvector centralities of the nodes of the underlying communication network, leading to a radically improved training efficiency. Additionally, our study explores the scaling behaviour and choice of environmental parameters under our proposed initialisation strategy. This work paves the way for more efficient and scalable artificial neural network training in a distributed and uncoordinated environment, offering a deeper understanding of the intertwining roles of network structure and learning dynamics.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Offline multi-agent reinforcement learning (MARL) leverages static datasets of experience to learn optimal multi-agent control. However, learning from static data presents several unique challenges to overcome. In this paper, we focus on coordination failure and investigate the role of joint actions in multi-agent policy gradients with offline data, focusing on a common setting we refer to as the 'Best Response Under Data' (BRUD) approach. By using two-player polynomial games as an analytical tool, we demonstrate a simple yet overlooked failure mode of BRUD-based algorithms, which can lead to catastrophic coordination failure in the offline setting. Building on these insights, we propose an approach to mitigate such failure, by prioritising samples from the dataset based on joint-action similarity during policy learning and demonstrate its effectiveness in detailed experiments. More generally, however, we argue that prioritised dataset sampling is a promising area for innovation in offline MARL that can be combined with other effective approaches such as critic and policy regularisation. Importantly, our work shows how insights drawn from simplified, tractable games can lead to useful, theoretically grounded insights that transfer to more complex contexts. A core dimension of offering is an interactive notebook, from which almost all of our results can be reproduced, in a browser.

Temporal difference (TD) learning is a fundamental technique in reinforcement learning that updates value estimates for states or state-action pairs using a TD target. This target represents an improved estimate of the true value by incorporating both immediate rewards and the estimated value of subsequent states. Traditionally, TD learning relies on the value of a single subsequent state. We propose an enhanced multi-state TD (MSTD) target that utilizes the estimated values of multiple subsequent states. Building on this new MSTD concept, we develop complete actor-critic algorithms that include management of replay buffers in two modes, and integrate with deep deterministic policy optimization (DDPG) and soft actor-critic (SAC). Experimental results demonstrate that algorithms employing the MSTD target significantly improve learning performance compared to traditional methods.The code is provided on GitHub.

We argue that the selective inclusion of data points based on latent objectives is common in practical situations, such as music sequences. Since this selection process often distorts statistical analysis, previous work primarily views it as a bias to be corrected and proposes various methods to mitigate its effect. However, while controlling this bias is crucial, selection also offers an opportunity to provide a deeper insight into the hidden generation process, as it is a fundamental mechanism underlying what we observe. In particular, overlooking selection in sequential data can lead to an incomplete or overcomplicated inductive bias in modeling, such as assuming a universal autoregressive structure for all dependencies. Therefore, rather than merely viewing it as a bias, we explore the causal structure of selection in sequential data to delve deeper into the complete causal process. Specifically, we show that selection structure is identifiable without any parametric assumptions or interventional experiments. Moreover, even in cases where selection variables coexist with latent confounders, we still establish the nonparametric identifiability under appropriate structural conditions. Meanwhile, we also propose a provably correct algorithm to detect and identify selection structures as well as other types of dependencies. The framework has been validated empirically on both synthetic data and real-world music.

Prompt-based approaches offer a cutting-edge solution to data privacy issues in continual learning, particularly in scenarios involving multiple data suppliers where long-term storage of private user data is prohibited. Despite delivering state-of-the-art performance, its impressive remembering capability can become a double-edged sword, raising security concerns as it might inadvertently retain poisoned knowledge injected during learning from private user data. Following this insight, in this paper, we expose continual learning to a potential threat: backdoor attack, which drives the model to follow a desired adversarial target whenever a specific trigger is present while still performing normally on clean samples. We highlight three critical challenges in executing backdoor attacks on incremental learners and propose corresponding solutions: (1) \emph{Transferability}: We employ a surrogate dataset and manipulate prompt selection to transfer backdoor knowledge to data from other suppliers; (2) \emph{Resiliency}: We simulate static and dynamic states of the victim to ensure the backdoor trigger remains robust during intense incremental learning processes; and (3) \emph{Authenticity}: We apply binary cross-entropy loss as an anti-cheating factor to prevent the backdoor trigger from devolving into adversarial noise. Extensive experiments across various benchmark datasets and continual learners validate our continual backdoor framework, achieving up to $100\%$ attack success rate, with further ablation studies confirming our contributions' effectiveness.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司