Mixed Reality (MR) is gaining prominence in manual task skill learning due to its in-situ, embodied, and immersive experience. To teach manual tasks, current methodologies break the task into hierarchies (tasks into subtasks) and visualize the current subtask and future in terms of causality. Existing psychology literature also shows that humans learn tasks by breaking them into hierarchies. In order to understand the design space of information visualized to the learner for better task understanding, we conducted a user study with 48 users. The study was conducted using a complex assembly task, which involves learning of both actions and tool usage. We aim to explore the effect of visualization of causality in the hierarchy for manual task learning in MR by four options: no causality, event level causality, interaction level causality, and gesture level causality. The results show that the user understands and performs best when all the level of causality is shown to the user. Based on the results, we further provide design recommendations and in-depth discussions for future manual task learning systems.
Automated hate speech detection is an important tool in combating the spread of hate speech, particularly in social media. Numerous methods have been developed for the task, including a recent proliferation of deep-learning based approaches. A variety of datasets have also been developed, exemplifying various manifestations of the hate-speech detection problem. We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods, mediated through the three most commonly used datasets. Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art. We particularly focus our analysis on measures of practical performance, including detection accuracy, computational efficiency, capability in using pre-trained models, and domain generalization. In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions. Code and dataset are available at //github.com/jmjmalik22/Hate-Speech-Detection.
In the industrial Internet of Things, condition monitoring sensor signals from complex systems often exhibit strong nonlinear and stochastic spatial-temporal dynamics under varying operating conditions. Such complex dynamics make fault detection particularly challenging. Although previously proposed methods effectively model these dynamics, they often neglect the dynamic evolution of relationships between sensor signals. Undetected shifts in these relationships can potentially result in significant system failures. Another limitation is their inability to effectively distinguish between novel operating conditions and actual faults. To address this gap, we propose DyEdgeGAT (Dynamic Edge via Graph Attention), a novel approach capable of detecting various faults, especially those characterized by relationship changes at early stages, while distinguishing faults from novel operating conditions. DyEdgeGAT is a graph-based framework that provides a novel graph inference scheme for multivariate time series that dynamically constructs edges to represent and track the evolution of relationships between time series. Additionally, it addresses a commonly overlooked aspect: the cause-and-effect relationships within the system, such as between control inputs and measurements. By incorporating system-independent variables as contexts of operating conditions into node dynamics extraction, DyEdgeGAT enhances its robustness against novel operating conditions. We rigorously evaluate DyEdgeGAT's performance using both a synthetic dataset, designed to simulate varying levels of fault severity and a real-world industrial-scale benchmark containing a variety of fault types with different detection complexities. Our findings demonstrate that DyEdgeGAT is highly effective in fault detection, showing particular strength in early fault detection while maintaining robustness under novel operating conditions.
Image Classification is a fundamental task in the field of computer vision that frequently serves as a benchmark for gauging advancements in Computer Vision. Over the past few years, significant progress has been made in image classification due to the emergence of deep learning. However, challenges still exist, such as modeling fine-grained visual information, high computation costs, the parallelism of the model, and inconsistent evaluation protocols across datasets. In this paper, we conduct a comprehensive survey of existing papers on Vision Transformers for image classification. We first introduce the popular image classification datasets that influenced the design of models. Then, we present Vision Transformers models in chronological order, starting with early attempts at adapting attention mechanism to vision tasks followed by the adoption of vision transformers, as they have demonstrated success in capturing intricate patterns and long-range dependencies within images. Finally, we discuss open problems and shed light on opportunities for image classification to facilitate new research ideas.
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.