亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A Stackelberg Vertex Cover game is played on an undirected graph $\mathcal{G}$ where some of the vertices are under the control of a \emph{leader}. The remaining vertices are assigned a fixed weight. The game is played in two stages. First, the leader chooses prices for the vertices under her control. Afterward, the second player, called \emph{follower}, selects a min weight vertex cover in the resulting weighted graph. That is, the follower selects a subset of vertices $C^*$ such that every edge has at least one endpoint in $C^*$ of minimum weight w.r.t.\ to the fixed weights, and the prices set by the leader. Stackelberg Vertex Cover (StackVC) describes the leader's optimization problem to select prices in the first stage of the game so as to maximize her revenue, which is the cumulative price of all her (priceable) vertices that are contained in the follower's solution. Previous research showed that StackVC is \textsf{NP}-hard on bipartite graphs, but solvable in polynomial time in the special case of bipartite graphs, where all priceable vertices belong to the same side of the bipartition. In this paper, we investigate StackVC on paths and present a dynamic program with linear time and space complexity.

相關內容

Machine learning (ML) models are known to be vulnerable to a number of attacks that target the integrity of their predictions or the privacy of their training data. To carry out these attacks, a black-box adversary must typically possess the ability to query the model and observe its outputs (e.g., labels). In this work, we demonstrate, for the first time, the ability to enhance such decision-based attacks. To accomplish this, we present an approach that exploits a novel side channel in which the adversary simply measures the execution time of the algorithm used to post-process the predictions of the ML model under attack. The leakage of inference-state elements into algorithmic timing side channels has never been studied before, and we have found that it can contain rich information that facilitates superior timing attacks that significantly outperform attacks based solely on label outputs. In a case study, we investigate leakage from the non-maximum suppression (NMS) algorithm, which plays a crucial role in the operation of object detectors. In our examination of the timing side-channel vulnerabilities associated with this algorithm, we identified the potential to enhance decision-based attacks. We demonstrate attacks against the YOLOv3 detector, leveraging the timing leakage to successfully evade object detection using adversarial examples, and perform dataset inference. Our experiments show that our adversarial examples exhibit superior perturbation quality compared to a decision-based attack. In addition, we present a new threat model in which dataset inference based solely on timing leakage is performed. To address the timing leakage vulnerability inherent in the NMS algorithm, we explore the potential and limitations of implementing constant-time inference passes as a mitigation strategy.

We consider the problem of computing the Maximal Exact Matches (MEMs) of a given pattern $P[1 .. m]$ on a large repetitive text collection $T[1 .. n]$, which is represented as a (hopefully much smaller) run-length context-free grammar of size $g_{rl}$. We show that the problem can be solved in time $O(m^2 \log^\epsilon n)$, for any constant $\epsilon > 0$, on a data structure of size $O(g_{rl})$. Further, on a locally consistent grammar of size $O(\delta\log\frac{n}{\delta})$, the time decreases to $O(m\log m(\log m + \log^\epsilon n))$. The value $\delta$ is a function of the substring complexity of $T$ and $\Omega(\delta\log\frac{n}{\delta})$ is a tight lower bound on the compressibility of repetitive texts $T$, so our structure has optimal size in terms of $n$ and $\delta$. We extend our results to several related problems, such as finding $k$-MEMs, MUMs, rare MEMs, and applications.

Broadcast protocols enable a set of $n$ parties to agree on the input of a designated sender, even facing attacks by malicious parties. In the honest-majority setting, randomization and cryptography were harnessed to achieve low-communication broadcast with sub-quadratic total communication and balanced sub-linear cost per party. However, comparatively little is known in the dishonest-majority setting. Here, the most communication-efficient constructions are based on Dolev and Strong (SICOMP '83), and sub-quadratic broadcast has not been achieved. On the other hand, the only nontrivial $\omega(n)$ communication lower bounds are restricted to deterministic protocols, or against strong adaptive adversaries that can perform "after the fact" removal of messages. We provide new communication lower bounds in this space, which hold against arbitrary cryptography and setup assumptions, as well as a simple protocol showing near tightness of our first bound. 1) We demonstrate a tradeoff between resiliency and communication for protocols secure against $n-o(n)$ static corruptions. For example, $\Omega(n\cdot {\sf polylog}(n))$ messages are needed when the number of honest parties is $n/{\sf polylog}(n)$; $\Omega(n\sqrt{n})$ messages are needed for $O(\sqrt{n})$ honest parties; and $\Omega(n^2)$ messages are needed for $O(1)$ honest parties. Complementarily, we demonstrate broadcast with $O(n\cdot{\sf polylog}(n))$ total communication facing any constant fraction of static corruptions. 2) Our second bound considers $n/2 + k$ corruptions and a weakly adaptive adversary that cannot remove messages "after the fact." We show that any broadcast protocol within this setting can be attacked to force an arbitrary party to send messages to $k$ other parties. This rules out, for example, broadcast facing 51% corruptions in which all non-sender parties have sublinear communication locality.

A pair $\langle G_0, G_1 \rangle$ of graphs admits a mutual witness proximity drawing $\langle \Gamma_0, \Gamma_1 \rangle$ when: (i) $\Gamma_i$ represents $G_i$, and (ii) there is an edge $(u,v)$ in $\Gamma_i$ if and only if there is no vertex $w$ in $\Gamma_{1-i}$ that is ``too close'' to both $u$ and $v$ ($i=0,1$). In this paper, we consider infinitely many definitions of closeness by adopting the $\beta$-proximity rule for any $\beta \in [1,\infty]$ and study pairs of isomorphic trees that admit a mutual witness $\beta$-proximity drawing. Specifically, we show that every two isomorphic trees admit a mutual witness $\beta$-proximity drawing for any $\beta \in [1,\infty]$. The constructive technique can be made ``robust'': For some tree pairs we can suitably prune linearly many leaves from one of the two trees and still retain their mutual witness $\beta$-proximity drawability. Notably, in the special case of isomorphic caterpillars and $\beta=1$, we construct linearly separable mutual witness Gabriel drawings.

We study the following problem: Given a set $S$ of $n$ points in the plane, how many edge-disjoint plane straight-line spanning paths of $S$ can one draw? A well known result is that when the $n$ points are in convex position, $\lfloor n/2\rfloor$ such paths always exist, but when the points of $S$ are in general position the only known construction gives rise to two edge-disjoint plane straight-line spanning paths. In this paper, we show that for any set $S$ of at least ten points, no three of which are collinear, one can draw at least three edge-disjoint plane straight-line spanning paths of~$S$. Our proof is based on a structural theorem on halving lines of point configurations and a strengthening of the theorem about two spanning paths, which we find interesting in its own right: if $S$ has at least six points, and we prescribe any two points on the boundary of its convex hull, then the set contains two edge-disjoint plane spanning paths starting at the prescribed points.

Mesh degeneration is a bottleneck for fluid-structure interaction (FSI) simulations and for shape optimization via the method of mappings. In both cases, an appropriate mesh motion technique is required. The choice is typically based on heuristics, e.g., the solution operators of partial differential equations (PDE), such as the Laplace or biharmonic equation. Especially the latter, which shows good numerical performance for large displacements, is expensive. Moreover, from a continuous perspective, choosing the mesh motion technique is to a certain extent arbitrary and has no influence on the physically relevant quantities. Therefore, we consider approaches inspired by machine learning. We present a hybrid PDE-NN approach, where the neural network (NN) serves as parameterization of a coefficient in a second order nonlinear PDE. We ensure existence of solutions for the nonlinear PDE by the choice of the neural network architecture. Moreover, we present an approach where a neural network corrects the harmonic extension such that the boundary displacement is not changed. In order to avoid technical difficulties in coupling finite element and machine learning software, we work with a splitting of the monolithic FSI system into three smaller subsystems. This allows to solve the mesh motion equation in a separate step. We assess the quality of the learned mesh motion technique by applying it to a FSI benchmark problem.

Many physical systems are governed by ordinary or partial differential equations (see, for example, Chapter ''Differential equations'', ''System of Differential Equations''). Typically the solution of such systems are functions of time or of a single space variable (in the case of ODE's), or they depend on multidimensional space coordinates or on space and time (in the case of PDE's). In some cases, the solutions may depend on several time or space scales. An example governed by ODE's is the damped harmonic oscillator, in the two extreme cases of very small or very large damping, the cardiovascular system, where the thickness of the arteries and veins varies from centimeters to microns, shallow water equations, which are valid when water depth is small compared to typical wavelength of surface waves, and sorption kinetics, in which the range of interaction of a surfactant with an air bubble is much smaller than the size of the bubble itself. In all such cases a detailed simulation of the models which resolves all space or time scales is often inefficient or intractable, and usually even unnecessary to provide a reasonable description of the behavior of the system. In the Chapter ''Multiscale modeling with differential equations'' we present examples of systems described by ODE's and PDE's which are intrinsically multiscale, and illustrate how suitable modeling provide an effective way to capture the essential behavior of the solutions of such systems without resolving the small scales.

Given $k$ input graphs $G_1, \dots ,G_k$, where each pair $G_i$, $G_j$ with $i \neq j$ shares the same graph $G$, the problem Simultaneous Embedding With Fixed Edges (SEFE) asks whether there exists a planar drawing for each input graph such that all drawings coincide on $G$. While SEFE is still open for the case of two input graphs, the problem is NP-complete for $k \geq 3$ [Schaefer, JGAA 13]. In this work, we explore the parameterized complexity of SEFE. We show that SEFE is FPT with respect to $k$ plus the vertex cover number or the feedback edge set number of the the union graph $G^\cup = G_1 \cup \dots \cup G_k$. Regarding the shared graph $G$, we show that SEFE is NP-complete, even if $G$ is a tree with maximum degree 4. Together with a known NP-hardness reduction [Angelini et al., TCS 15], this allows us to conclude that several parameters of $G$, including the maximum degree, the maximum number of degree-1 neighbors, the vertex cover number, and the number of cutvertices are intractable. We also settle the tractability of all pairs of these parameters. We give FPT algorithms for the vertex cover number plus either of the first two parameters and for the number of cutvertices plus the maximum degree, whereas we prove all remaining combinations to be intractable.

Given a straight-line drawing of a graph, a {\em segment} is a maximal set of edges that form a line segment. Given a planar graph $G$, the {\em segment number} of $G$ is the minimum number of segments that can be achieved by any planar straight-line drawing of $G$. The {\em line cover number} of $G$ is the minimum number of lines that support all the edges of a planar straight-line drawing of $G$. Computing the segment number or the line cover number of a planar graph is $\exists\mathbb{R}$-complete and, thus, NP-hard. We study the problem of computing the segment number from the perspective of parameterized complexity. We show that this problem is fixed-parameter tractable with respect to each of the following parameters: the vertex cover number, the segment number, and the line cover number. We also consider colored versions of the segment and the line cover number.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

北京阿比特科技有限公司