Two-sample multiple testing problems of sparse spatial data are frequently arising in a variety of scientific applications. In this article, we develop a novel neighborhood-assisted and posterior-adjusted (NAPA) approach to incorporate both the spatial smoothness and sparsity type side information to improve the power of the test while controlling the false discovery of multiple testing. We translate the side information into a set of weights to adjust the $p$-values, where the spatial pattern is encoded by the ordering of the locations, and the sparsity structure is encoded by a set of auxiliary covariates. We establish the theoretical properties of the proposed test, including the guaranteed power improvement over some state-of-the-art alternative tests, and the asymptotic false discovery control. We demonstrate the efficacy of the test through intensive simulations and two neuroimaging applications.
The field of visual object tracking is dominated by methods that combine simple tracking algorithms and ad hoc schemes. Probabilistic tracking algorithms, which are leading in other fields, are surprisingly absent from the leaderboards. We found that accounting for distance in target kinematics, exploiting detector confidence and modelling non-uniform clutter characteristics is critical for a probabilistic tracker to work in visual tracking. Previous probabilistic methods fail to address most or all these aspects, which we believe is why they fall so far behind current state-of-the-art (SOTA) methods (there are no probabilistic trackers in the MOT17 top 100). To rekindle progress among probabilistic approaches, we propose a set of pragmatic models addressing these challenges, and demonstrate how they can be incorporated into a probabilistic framework. We present BASE (Bayesian Approximation Single-hypothesis Estimator), a simple, performant and easily extendible visual tracker, achieving state-of-the-art (SOTA) on MOT17 and MOT20, without using Re-Id. Code will be made available at //github.com/ffi-no
Phase retrieval (PR) is a crucial problem in many imaging applications. This study focuses on resolving the holographic phase retrieval problem in situations where the measurements are affected by a combination of Poisson and Gaussian noise, which commonly occurs in optical imaging systems. To address this problem, we propose a new algorithm called "AWFS" that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior. Specifically, we formulate the PR problem as an optimization problem that incorporates both data fidelity and regularization terms. We calculate the gradient of the log-likelihood function for PR and determine its corresponding Lipschitz constant. Additionally, we introduce a generative prior in our regularization framework by using score matching to capture information about the gradient of image prior distributions. We provide theoretical analysis that establishes a critical-point convergence guarantee for the proposed algorithm. The results of our simulation experiments on three different datasets show the following: 1) By using the PG likelihood model, the proposed algorithm improves reconstruction compared to algorithms based solely on Gaussian or Poisson likelihood. 2) The proposed score-based image prior method, performs better than the method based on denoising diffusion probabilistic model (DDPM), as well as plug-and-play alternating direction method of multipliers (PnP-ADMM) and regularization by denoising (RED).
Generalization techniques have many applications, such as template construction, argument generalization, and indexing. Modern interactive provers can exploit advancement in generalization methods over expressive-type theories to further develop proof generalization techniques and other transformations. So far, investigations concerned with anti-unification (AU) over lambda terms and similar type theories have focused on developing algorithms for well-studied variants. These variants forbid the nesting of generalization variables, restrict the structure of their arguments, and are unitary. Extending these methods to more expressive variants is important to applications. We consider the case of nested generalization variables and show that the AU problem is nullary (using capture-avoiding substitutions), even when the arguments to free variables are severely restricted.
Memory disaggregation has emerged as an alternative to traditional server architecture in data centers. This paper introduces DRackSim, a simulation infrastructure to model rack-scale hardware disaggregated memory. DRackSim models multiple compute nodes, memory pools, and a rack-scale interconnect similar to GenZ. An application-level simulation approach simulates an x86 out-of-order multi-core processor with a multi-level cache hierarchy at compute nodes. A queue-based simulation is used to model a remote memory controller and rack-level interconnect, which allows both cache-based and page-based access to remote memory. DRackSim models a central memory manager to manage address space at the memory pools. We integrate community-accepted DRAMSim2 to perform memory simulation at local and remote memory using multiple DRAMSim2 instances. An incremental approach is followed to validate the core and cache subsystem of DRackSim with that of Gem5. We measure the performance of various HPC workloads and show the performance impact for different nodes/pools configuration.
Image denoising is a fundamental and challenging task in the field of computer vision. Most supervised denoising methods learn to reconstruct clean images from noisy inputs, which have intrinsic spectral bias and tend to produce over-smoothed and blurry images. Recently, researchers have explored diffusion models to generate high-frequency details in image restoration tasks, but these models do not guarantee that the generated texture aligns with real images, leading to undesirable artifacts. To address the trade-off between visual appeal and fidelity of high-frequency details in denoising tasks, we propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG). Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal, which serves as the initial estimation for subsequent steps to maintain fidelity. Additionally, it employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality. We further introduce a two-stage training scheme to ensure effective collaboration between the reconstructive and generative modules of RnG. To reduce undesirable texture introduced by the diffusion model, we also propose an adaptive step controller that regulates the number of inverse steps applied by the diffusion model, allowing control over the level of high-frequency details added to each patch as well as saving the inference computational cost. Through our proposed RnG, we achieve a better balance between perception and distortion. We conducted extensive experiments on both synthetic and real denoising datasets, validating the superiority of the proposed approach.
Contrastive learning allows us to flexibly define powerful losses by contrasting positive pairs from sets of negative samples. Recently, the principle has also been used to learn cross-modal embeddings for video and text, yet without exploiting its full potential. In particular, previous losses do not take the intra-modality similarities into account, which leads to inefficient embeddings, as the same content is mapped to multiple points in the embedding space. With CrossCLR, we present a contrastive loss that fixes this issue. Moreover, we define sets of highly related samples in terms of their input embeddings and exclude them from the negative samples to avoid issues with false negatives. We show that these principles consistently improve the quality of the learned embeddings. The joint embeddings learned with CrossCLR extend the state of the art in video-text retrieval on Youcook2 and LSMDC datasets and in video captioning on Youcook2 dataset by a large margin. We also demonstrate the generality of the concept by learning improved joint embeddings for other pairs of modalities.
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.
Deep learning applies multiple processing layers to learn representations of data with multiple levels of feature extraction. This emerging technique has reshaped the research landscape of face recognition since 2014, launched by the breakthroughs of Deepface and DeepID methods. Since then, deep face recognition (FR) technique, which leverages the hierarchical architecture to learn discriminative face representation, has dramatically improved the state-of-the-art performance and fostered numerous successful real-world applications. In this paper, we provide a comprehensive survey of the recent developments on deep FR, covering the broad topics on algorithms, data, and scenes. First, we summarize different network architectures and loss functions proposed in the rapid evolution of the deep FR methods. Second, the related face processing methods are categorized into two classes: `one-to-many augmentation' and `many-to-one normalization'. Then, we summarize and compare the commonly used databases for both model training and evaluation. Third, we review miscellaneous scenes in deep FR, such as cross-factor, heterogenous, multiple-media and industry scenes. Finally, potential deficiencies of the current methods and several future directions are highlighted.
Image captioning is a challenging task that combines the field of computer vision and natural language processing. A variety of approaches have been proposed to achieve the goal of automatically describing an image, and recurrent neural network (RNN) or long-short term memory (LSTM) based models dominate this field. However, RNNs or LSTMs cannot be calculated in parallel and ignore the underlying hierarchical structure of a sentence. In this paper, we propose a framework that only employs convolutional neural networks (CNNs) to generate captions. Owing to parallel computing, our basic model is around 3 times faster than NIC (an LSTM-based model) during training time, while also providing better results. We conduct extensive experiments on MSCOCO and investigate the influence of the model width and depth. Compared with LSTM-based models that apply similar attention mechanisms, our proposed models achieves comparable scores of BLEU-1,2,3,4 and METEOR, and higher scores of CIDEr. We also test our model on the paragraph annotation dataset, and get higher CIDEr score compared with hierarchical LSTMs
Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.