亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a generalization of the classic Spanning Tree problem that allows for a non-uniform failure model. More precisely, edges are either \emph{safe} or \emph{unsafe} and we assume that failures only affect unsafe edges. In Unweighted Flexible Graph Connectivity we are given an undirected graph $G = (V,E)$ in which the edge set $E$ is partitioned into a set $S$ of safe edges and a set $U$ of unsafe edges and the task is to find a set $T$ of at most $k$ edges such that $T - \{u\}$ is connected and spans $V$ for any unsafe edge $u \in T$. Unweighted Flexible Graph Connectivity generalizes both Spanning Tree and Hamiltonian Cycle. We study Unweighted Flexible Graph Connectivity in terms of fixed-parameter tractability (FPT). We show an almost complete dichotomy on which parameters lead to fixed-parameter tractability and which lead to hardness. To this end, we obtain FPT-time algorithms with respect to the vertex deletion distance to cluster graphs and with respect to the treewidth. By exploiting the close relationship to Hamiltonian Cycle, we show that FPT-time algorithms for many smaller parameters are unlikely under standard parameterized complexity assumptions. Regarding problem-specific parameters, we observe that Unweighted Flexible Graph Connectivity} admits an FPT-time algorithm when parameterized by the number of unsafe edges. Furthermore, we investigate a below-upper-bound parameter for the number of edges of a solution. We show that this parameter also leads to an FPT-time algorithm.

相關內容

We present an efficient algorithm to solve semirandom planted instances of any Boolean constraint satisfaction problem (CSP). The semirandom model is a hybrid between worst-case and average-case input models, where the input is generated by (1) choosing an arbitrary planted assignment $x^*$, (2) choosing an arbitrary clause structure, and (3) choosing literal negations for each clause from an arbitrary distribution "shifted by $x^*$" so that $x^*$ satisfies each constraint. For an $n$ variable semirandom planted instance of a $k$-arity CSP, our algorithm runs in polynomial time and outputs an assignment that satisfies all but a $o(1)$-fraction of constraints, provided that the instance has at least $\tilde{O}(n^{k/2})$ constraints. This matches, up to $polylog(n)$ factors, the clause threshold for algorithms that solve fully random planted CSPs [FPV15], as well as algorithms that refute random and semirandom CSPs [AOW15, AGK21]. Our result shows that despite having worst-case clause structure, the randomness in the literal patterns makes semirandom planted CSPs significantly easier than worst-case, where analogous results require $O(n^k)$ constraints [AKK95, FLP16]. Perhaps surprisingly, our algorithm follows a significantly different conceptual framework when compared to the recent resolution of semirandom CSP refutation. This turns out to be inherent and, at a technical level, can be attributed to the need for relative spectral approximation of certain random matrices - reminiscent of the classical spectral sparsification - which ensures that an SDP can certify the uniqueness of the planted assignment. In contrast, in the refutation setting, it suffices to obtain a weaker guarantee of absolute upper bounds on the spectral norm of related matrices.

We study the problem of estimating mixtures of Gaussians under the constraint of differential privacy (DP). Our main result is that $\tilde{O}(k^2 d^4 \log(1/\delta) / \alpha^2 \varepsilon)$ samples are sufficient to estimate a mixture of $k$ Gaussians up to total variation distance $\alpha$ while satisfying $(\varepsilon, \delta)$-DP. This is the first finite sample complexity upper bound for the problem that does not make any structural assumptions on the GMMs. To solve the problem, we devise a new framework which may be useful for other tasks. On a high level, we show that if a class of distributions (such as Gaussians) is (1) list decodable and (2) admits a "locally small'' cover (Bun et al., 2021) with respect to total variation distance, then the class of its mixtures is privately learnable. The proof circumvents a known barrier indicating that, unlike Gaussians, GMMs do not admit a locally small cover (Aden-Ali et al., 2021b).

Many libraries, such as OpenCV, FFmpeg, XNNPACK, and Eigen, utilize Arm or x86 SIMD Intrinsics to optimize programs for performance. With the emergence of RISC-V Vector Extensions (RVV), there is a need to migrate these performance legacy codes for RVV. Currently, the migration of NEON code to RVV code requires manual rewriting, which is a time-consuming and error-prone process. In this work, we use the open source tool, "SIMD Everywhere" (SIMDe), to automate the migration. Our primary task is to enhance SIMDe to enable the conversion of ARM NEON Intrinsics types and functions to their corresponding RVV Intrinsics types and functions. For type conversion, we devise strategies to convert Neon Intrinsics types to RVV Intrinsics by considering the vector length agnostic (vla) architectures. With function conversions, we analyze commonly used conversion methods in SIMDe and develop customized conversions for each function based on the results of RVV code generations. In our experiments with Google XNNPACK library, our enhanced SIMDe achieves speedup ranging from 1.51x to 5.13x compared to the original SIMDe, which does not utilize customized RVV implementations for the conversions.

Since the popularization of BiLSTMs and Transformer-based bidirectional encoders, state-of-the-art syntactic parsers have lacked incrementality, requiring access to the whole sentence and deviating from human language processing. This paper explores whether fully incremental dependency parsing with modern architectures can be competitive. We build parsers combining strictly left-to-right neural encoders with fully incremental sequence-labeling and transition-based decoders. The results show that fully incremental parsing with modern architectures considerably lags behind bidirectional parsing, noting the challenges of psycholinguistically plausible parsing.

We present the Temporal Graph Benchmark (TGB), a collection of challenging and diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine learning models on temporal graphs. TGB datasets are of large scale, spanning years in duration, incorporate both node and edge-level prediction tasks and cover a diverse set of domains including social, trade, transaction, and transportation networks. For both tasks, we design evaluation protocols based on realistic use-cases. We extensively benchmark each dataset and find that the performance of common models can vary drastically across datasets. In addition, on dynamic node property prediction tasks, we show that simple methods often achieve superior performance compared to existing temporal graph models. We believe that these findings open up opportunities for future research on temporal graphs. Finally, TGB provides an automated machine learning pipeline for reproducible and accessible temporal graph research, including data loading, experiment setup and performance evaluation. TGB will be maintained and updated on a regular basis and welcomes community feedback. TGB datasets, data loaders, example codes, evaluation setup, and leaderboards are publicly available at //tgb.complexdatalab.com/.

We present a comprehensive evaluation of the robustness and explainability of ResNet-like models in the context of Unintended Radiated Emission (URE) classification and suggest a new approach leveraging Neural Stochastic Differential Equations (SDEs) to address identified limitations. We provide an empirical demonstration of the fragility of ResNet-like models to Gaussian noise perturbations, where the model performance deteriorates sharply and its F1-score drops to near insignificance at 0.008 with a Gaussian noise of only 0.5 standard deviation. We also highlight a concerning discrepancy where the explanations provided by ResNet-like models do not reflect the inherent periodicity in the input data, a crucial attribute in URE detection from stable devices. In response to these findings, we propose a novel application of Neural SDEs to build models for URE classification that are not only robust to noise but also provide more meaningful and intuitive explanations. Neural SDE models maintain a high F1-score of 0.93 even when exposed to Gaussian noise with a standard deviation of 0.5, demonstrating superior resilience to ResNet models. Neural SDE models successfully recover the time-invariant or periodic horizontal bands from the input data, a feature that was conspicuously missing in the explanations generated by ResNet-like models. This advancement presents a small but significant step in the development of robust and interpretable models for real-world URE applications where data is inherently noisy and assurance arguments demand interpretable machine learning predictions.

This work studies the pure-exploration setting for the convex hull membership (CHM) problem where one aims to efficiently and accurately determine if a given point lies in the convex hull of means of a finite set of distributions. We give a complete characterization of the sample complexity of the CHM problem in the one-dimensional setting. We present the first asymptotically optimal algorithm called Thompson-CHM, whose modular design consists of a stopping rule and a sampling rule. In addition, we extend the algorithm to settings that generalize several important problems in the multi-armed bandit literature. Furthermore, we discuss the extension of Thompson-CHM to higher dimensions. Finally, we provide numerical experiments to demonstrate the empirical behavior of the algorithm matches our theoretical results for realistic time horizons.

Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

北京阿比特科技有限公司