亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Blockwise determinantal ideals are those generated by the union of all the minors of specified sizes in certain blocks of a generic matrix, and they are the natural generalization of many existing determinantal ideals like the Schubert and ladder ones. In this paper we establish several criteria to verify whether the Gr\"obner bases of blockwise determinantal ideals with respect to (anti-)diagonal term orders are minimal or reduced. In particular, for Schubert determinantal ideals, while all the elusive minors form the reduced Gr\"obner bases when the defining permutations are vexillary, in the non-vexillary case we derive an explicit formula for computing the reduced Gr\"obner basis from elusive minors which avoids all algebraic operations. The fundamental properties of being normal and strong for W-characteristic sets and characteristic pairs, which are heavily connected to the reduced Gr\"obner bases, of Schubert determinantal ideals are also proven.

相關內容

Probabilistic principal component analysis (PPCA) is currently one of the most used statistical tools to reduce the ambient dimension of the data. From multidimensional scaling to the imputation of missing data, PPCA has a broad spectrum of applications ranging from science and engineering to quantitative finance. Despite this wide applicability in various fields, hardly any theoretical guarantees exist to justify the soundness of the maximal likelihood (ML) solution for this model. In fact, it is well known that the maximum likelihood estimation (MLE) can only recover the true model parameters up to a rotation. The main obstruction is posed by the inherent identifiability nature of the PPCA model resulting from the rotational symmetry of the parameterization. To resolve this ambiguity, we propose a novel approach using quotient topological spaces and in particular, we show that the maximum likelihood solution is consistent in an appropriate quotient Euclidean space. Furthermore, our consistency results encompass a more general class of estimators beyond the MLE. Strong consistency of the ML estimate and consequently strong covariance estimation of the PPCA model have also been established under a compactness assumption.

We tackle the challenge of robotic bin packing with irregular objects, such as groceries. Given the diverse physical attributes of these objects and the complex constraints governing their placement and manipulation, employing preprogrammed strategies becomes unfeasible. Our approach is to learn directly from expert demonstrations in order to extract implicit task knowledge and strategies to ensure safe object positioning, efficient use of space, and the generation of human-like behaviors that enhance human-robot trust. We rely on human demonstrations to learn a Markov chain for predicting the object packing sequence for a given set of items and then compare it with human performance. Our experimental results show that the model outperforms human performance by generating sequence predictions that humans classify as human-like more frequently than human-generated sequences. The human demonstrations were collected using our proposed VR platform, BoxED, which is a box packaging environment for simulating real-world objects and scenarios for fast and streamlined data collection with the purpose of teaching robots. We collected data from 43 participants packing a total of 263 boxes with supermarket-like objects, yielding 4644 object manipulations. Our VR platform can be easily adapted to new scenarios and objects, and is publicly available, alongside our dataset, at //github.com/andrejfsantos4/BoxED.

This paper addresses the problem of generating a common random string with min-entropy k using an unlimited supply of noisy EPR pairs or quantum isotropic states, with minimal communication between Alice and Bob. The paper considers two communication models -- one-way classical communication and one-way quantum communication, and derives upper bounds on the optimal common randomness rate for both models. We show that in the case of classical communication, quantum isotropic states have no advantage over noisy classical correlation, and that the optimal common randomness rate can be achieved by a classical strategy, in which Alice and Bob share classical $\rho$-correlated random variables. In the case of quantum communication, we demonstrate that the common randomness rate can be increased by using superdense coding on quantum isotropic states. Our main result is an upper bound on the optimal common randomness rate achievable by using one-way quantum communication. We also provide an application of this result, which yields upper bounds on the classical capacity of the noiseless quantum channel assisted by noisy entanglement.

The fundamental diagram serves as the foundation of traffic flow modeling for almost a century. With the increasing availability of road sensor data, deterministic parametric models have proved inadequate in describing the variability of real-world data, especially in congested area of the density-flow diagram. In this paper we estimate the stochastic density-flow relation introducing a nonparametric method called convex quantile regression. The proposed method does not depend on any prior functional form assumptions, but thanks to the concavity constraints, the estimated function satisfies the theoretical properties of the density-flow curve. The second contribution is to develop the new convex quantile regression with bags (CQRb) approach to facilitate practical implementation of CQR to the real-world data. We illustrate the CQRb estimation process using the road sensor data from Finland in years 2016-2018. Our third contribution is to demonstrate the excellent out-of-sample predictive power of the proposed CQRb method in comparison to the standard parametric deterministic approach.

We consider the problem of classifying those graphs that arise as an undirected square of an oriented graph by generalising the notion of quasi-transitive directed graphs to mixed graphs. We fully classify those graphs of maximum degree three and those graphs of girth at least four that arise an undirected square of an oriented graph. In contrast to the recognition problem for graphs that admit a quasi-transitive orientation, we find it is NP-complete to decide if a graph admits a partial orientation as a quasi-transitive mixed graph. We prove the problem is Polynomial when restricted to inputs of maximum degree three, but remains NP-complete when restricted to inputs with maximum degree at least five. Our proof further implies that for fixed $k \geq 3$, it is NP-complete to decide if a graph arises as an undirected square of an orientation of a graph with $\Delta = k$.

The compact muon solenoid (CMS) experiment is a general-purpose detector for high-energy collision at the large hadron collider (LHC) at CERN. It employs an online data quality monitoring (DQM) system to promptly spot and diagnose particle data acquisition problems to avoid data quality loss. In this study, we present semi-supervised spatio-temporal anomaly detection (AD) monitoring for the physics particle reading channels of the hadronic calorimeter (HCAL) of the CMS using three-dimensional digi-occupancy map data of the DQM. We propose the GraphSTAD system, which employs convolutional and graph neural networks to learn local spatial characteristics induced by particles traversing the detector, and global behavior owing to shared backend circuit connections and housing boxes of the channels, respectively. Recurrent neural networks capture the temporal evolution of the extracted spatial features. We have validated the accuracy of the proposed AD system in capturing diverse channel fault types using the LHC Run-2 collision data sets. The GraphSTAD system has achieved production-level accuracy and is being integrated into the CMS core production system--for real-time monitoring of the HCAL. We have also provided a quantitative performance comparison with alternative benchmark models to demonstrate the promising leverage of the presented system.

Markov chain analysis is a key technique in formal verification. A practical obstacle is that all probabilities in Markov models need to be known. However, system quantities such as failure rates or packet loss ratios, etc. are often not -- or only partially -- known. This motivates considering parametric models with transitions labeled with functions over parameters. Whereas traditional Markov chain analysis relies on a single, fixed set of probabilities, analysing parametric Markov models focuses on synthesising parameter values that establish a given safety or performance specification $\varphi$. Examples are: what component failure rates ensure the probability of a system breakdown to be below 0.00000001?, or which failure rates maximise the performance, for instance the throughput, of the system? This paper presents various analysis algorithms for parametric discrete-time Markov chains and Markov decision processes. We focus on three problems: (a) do all parameter values within a given region satisfy $\varphi$?, (b) which regions satisfy $\varphi$ and which ones do not?, and (c) an approximate version of (b) focusing on covering a large fraction of all possible parameter values. We give a detailed account of the various algorithms, present a software tool realising these techniques, and report on an extensive experimental evaluation on benchmarks that span a wide range of applications.

Informally, the 'linear representation hypothesis' is the idea that high-level concepts are represented linearly as directions in some representation space. In this paper, we address two closely related questions: What does "linear representation" actually mean? And, how do we make sense of geometric notions (e.g., cosine similarity or projection) in the representation space? To answer these, we use the language of counterfactuals to give two formalizations of "linear representation", one in the output (word) representation space, and one in the input (sentence) space. We then prove these connect to linear probing and model steering, respectively. To make sense of geometric notions, we use the formalization to identify a particular (non-Euclidean) inner product that respects language structure in a sense we make precise. Using this causal inner product, we show how to unify all notions of linear representation. In particular, this allows the construction of probes and steering vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the existence of linear representations of concepts, the connection to interpretation and control, and the fundamental role of the choice of inner product.

Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司