亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Approximate Nearest Neighbor Search (ANNS) is a fundamental and critical component in many applications, including recommendation systems and large language model-based applications. With the advancement of multimodal neural models, which transform data from different modalities into a shared high-dimensional space as feature vectors, cross-modal ANNS aims to use the data vector from one modality (e.g., texts) as the query to retrieve the most similar items from another (e.g., images or videos). However, there is an inherent distribution gap between embeddings from different modalities, and cross-modal queries become Out-of-Distribution (OOD) to the base data. Consequently, state-of-the-art ANNS approaches suffer poor performance for OOD workloads. In this paper, we quantitatively analyze the properties of the OOD workloads to gain an understanding of their ANNS efficiency. Unlike single-modal workloads, we reveal OOD queries spatially deviate from base data, and the k-nearest neighbors of an OOD query are distant from each other in the embedding space. The property breaks the assumptions of existing ANNS approaches and mismatches their design for efficient search. With insights from the OOD workloads, we propose pRojected bipartite Graph (RoarGraph), an efficient ANNS graph index built under the guidance of query distribution. Extensive experiments show that RoarGraph significantly outperforms state-of-the-art approaches on modern cross-modal datasets, achieving up to 3.56x faster search speed at a 90% recall rate for OOD queries.

相關內容

Monocular scene understanding is a foundational component of autonomous systems. Within the spectrum of monocular perception topics, one crucial and useful task for holistic 3D scene understanding is semantic scene completion (SSC), which jointly completes semantic information and geometric details from RGB input. However, progress in SSC, particularly in large-scale street views, is hindered by the scarcity of high-quality datasets. To address this issue, we introduce SSCBench, a comprehensive benchmark that integrates scenes from widely used automotive datasets (e.g., KITTI-360, nuScenes, and Waymo). SSCBench follows an established setup and format in the community, facilitating the easy exploration of SSC methods in various street views. We benchmark models using monocular, trinocular, and point cloud input to assess the performance gap resulting from sensor coverage and modality. Moreover, we have unified semantic labels across diverse datasets to simplify cross-domain generalization testing. We commit to including more datasets and SSC models to drive further advancements in this field.

Random Feature Model (RFM) with a nonlinear activation function is instrumental in understanding training and generalization performance in high-dimensional learning. While existing research has established an asymptotic equivalence in performance between the RFM and noisy linear models under isotropic data assumptions, empirical observations indicate that the RFM frequently surpasses linear models in practical applications. To address this gap, we ask, "When and how does the RFM outperform linear models?" In practice, inputs often have additional structures that significantly influence learning. Therefore, we explore the RFM under anisotropic input data characterized by spiked covariance in the proportional asymptotic limit, where dimensions diverge jointly while maintaining finite ratios. Our analysis reveals that a high correlation between inputs and labels is a critical factor enabling the RFM to outperform linear models. Moreover, we show that the RFM performs equivalent to noisy polynomial models, where the polynomial degree depends on the strength of the correlation between inputs and labels. Our numerical simulations validate these theoretical insights, confirming the performance-wise superiority of RFM in scenarios characterized by strong input-label correlation.

SLAM is a fundamental capability of unmanned systems, with LiDAR-based SLAM gaining widespread adoption due to its high precision. Current SLAM systems can achieve centimeter-level accuracy within a short period. However, there are still several challenges when dealing with largescale mapping tasks including significant storage requirements and difficulty of reusing the constructed maps. To address this, we first design an elastic and lightweight map representation called CELLmap, composed of several CELLs, each representing the local map at the corresponding location. Then, we design a general backend including CELL-based bidirectional registration module and loop closure detection module to improve global map consistency. Our experiments have demonstrated that CELLmap can represent the precise geometric structure of large-scale maps of KITTI dataset using only about 60 MB. Additionally, our general backend achieves up to a 26.88% improvement over various LiDAR odometry methods.

Depth perception is essential for a robot's spatial and geometric understanding of its environment, with many tasks traditionally relying on hardware-based depth sensors like RGB-D or stereo cameras. However, these sensors face practical limitations, including issues with transparent and reflective objects, high costs, calibration complexity, spatial and energy constraints, and increased failure rates in compound systems. While monocular depth estimation methods offer a cost-effective and simpler alternative, their adoption in robotics is limited due to their output of relative rather than metric depth, which is crucial for robotics applications. In this paper, we propose a method that utilizes a single calibrated camera, enabling the robot to act as a ``measuring stick" to convert relative depth estimates into metric depth in real-time as tasks are performed. Our approach employs an LSTM-based metric depth regressor, trained online and refined through probabilistic filtering, to accurately restore the metric depth across the monocular depth map, particularly in areas proximal to the robot's motion. Experiments with real robots demonstrate that our method significantly outperforms current state-of-the-art monocular metric depth estimation techniques, achieving a 22.1% reduction in depth error and a 52% increase in success rate for a downstream task.

In the domain of recommendation and collaborative filtering, Graph Contrastive Learning (GCL) has become an influential approach. Nevertheless, the reasons for the effectiveness of contrastive learning are still not well understood. In this paper, we challenge the conventional use of random augmentations on graph structure or embedding space in GCL, which may disrupt the structural and semantic information inherent in Graph Neural Networks. Moreover, fixed-rate data augmentation proves to be less effective compared to augmentation with an adaptive rate. In the initial training phases, significant perturbations are more suitable, while as the training approaches convergence, milder perturbations yield better results. We introduce a twin encoder in place of random augmentations, demonstrating the redundancy of traditional augmentation techniques. The twin encoder updating mechanism ensures the generation of more diverse contrastive views in the early stages, transitioning to views with greater similarity as training progresses. In addition, we investigate the learned representations from the perspective of alignment and uniformity on a hypersphere to optimize more efficiently. Our proposed Twin Graph Contrastive Learning model -- TwinCL -- aligns positive pairs of user and item embeddings and the representations from the twin encoder while maintaining the uniformity of the embeddings on the hypersphere. Our theoretical analysis and experimental results show that the proposed model optimizing alignment and uniformity with the twin encoder contributes to better recommendation accuracy and training efficiency performance. In comprehensive experiments on three public datasets, our proposed TwinCL achieves an average improvement of 5.6% (NDCG@10) in recommendation accuracy with faster training speed, while effectively mitigating popularity bias.

Causal Graph Discovery (CGD) is the process of estimating the underlying probabilistic graphical model that represents joint distribution of features of a dataset. CGD-algorithms are broadly classified into two categories: (i) Constraint-based algorithms (outcome depends on conditional independence (CI) tests), (ii) Score-based algorithms (outcome depends on optimized score-function). Since, sensitive features of observational data is prone to privacy-leakage, Differential Privacy (DP) has been adopted to ensure user privacy in CGD. Adding same amount of noise in this sequential-natured estimation process affects the predictive performance of the algorithms. As initial CI tests in constraint-based algorithms and later iterations of the optimization process of score-based algorithms are crucial, they need to be more accurate, less noisy. Based on this key observation, we present CURATE (CaUsal gRaph AdapTivE privacy), a DP-CGD framework with adaptive privacy budgeting. In contrast to existing DP-CGD algorithms with uniform privacy budgeting across all iterations, CURATE allows adaptive privacy budgeting by minimizing error probability (for constraint-based), maximizing iterations of the optimization problem (for score-based) while keeping the cumulative leakage bounded. To validate our framework, we present a comprehensive set of experiments on several datasets and show that CURATE achieves higher utility compared to existing DP-CGD algorithms with less privacy-leakage.

Computing the exact optimal experimental design has been a longstanding challenge in various scientific fields. This problem, when formulated using a specific information function, becomes a mixed-integer nonlinear programming (MINLP) problem, which is typically NP-hard, thus making the computation of a globally optimal solution extremely difficult. The branch and bound (BnB) method is a widely used approach for solving such MINLPs, but its practical efficiency heavily relies on the ability to solve continuous relaxations effectively within the BnB search tree. In this paper, we propose a novel projected Newton framework, combining with a vertex exchange method for efficiently solving the associated subproblems, designed to enhance the BnB method. This framework offers strong convergence guarantees by utilizing recent advances in solving self-concordant optimization and convex quadratic programming problems. Extensive numerical experiments on A-optimal and D-optimal design problems, two of the most commonly used models, demonstrate the framework's promising numerical performance. Specifically, our framework significantly improves the efficiency of node evaluation within the BnB search tree and enhances the accuracy of solutions compared to state-of-the-art methods. The proposed framework is implemented in an open source Julia package called \texttt{PNOD.jl}, which opens up possibilities for its application in a wide range of real-world scenarios.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司