Humans and animals have a rich and flexible understanding of the physical world, which enables them to infer the underlying dynamical trajectories of objects and events, plausible future states, and use that to plan and anticipate the consequences of actions. However, the neural mechanisms underlying these computations are unclear. We combine a goal-driven modeling approach with dense neurophysiological data and high-throughput human behavioral readouts to directly impinge on this question. Specifically, we construct and evaluate several classes of sensory-cognitive networks to predict the future state of rich, ethologically-relevant environments, ranging from self-supervised end-to-end models with pixel-wise or object-centric objectives, to models that future predict in the latent space of purely static image-based or dynamic video-based pretrained foundation models. We find strong differentiation across these model classes in their ability to predict neural and behavioral data both within and across diverse environments. In particular, we find that neural responses are currently best predicted by models trained to predict the future state of their environment in the latent space of pretrained foundation models optimized for dynamic scenes in a self-supervised manner. Notably, models that future predict in the latent space of video foundation models that are optimized to support a diverse range of sensorimotor tasks, reasonably match both human behavioral error patterns and neural dynamics across all environmental scenarios that we were able to test. Overall, these findings suggest that the neural mechanisms and behaviors of primate mental simulation are thus far most consistent with being optimized to future predict on dynamic, reusable visual representations that are useful for embodied AI more generally.
There are two major challenges for scaling up robot navigation around dynamic obstacles: the complex interaction dynamics of the obstacles can be hard to model analytically, and the complexity of planning and control grows exponentially in the number of obstacles. Data-driven and learning-based methods are thus particularly valuable in this context. However, data-driven methods are sensitive to distribution drift, making it hard to train and generalize learned models across different obstacle densities. We propose a novel method for compositional learning of Sequential Neural Control Barrier models (SNCBFs) to achieve scalability. Our approach exploits an important observation: the spatial interaction patterns of multiple dynamic obstacles can be decomposed and predicted through temporal sequences of states for each obstacle. Through decomposition, we can generalize control policies trained only with a small number of obstacles, to environments where the obstacle density can be 100x higher. We demonstrate the benefits of the proposed methods in improving dynamic collision avoidance in comparison with existing methods including potential fields, end-to-end reinforcement learning, and model-predictive control. We also perform hardware experiments and show the practical effectiveness of the approach in the supplementary video.
In recent years large model trained on huge amount of cross-modality data, which is usually be termed as foundation model, achieves conspicuous accomplishment in many fields, such as image recognition and generation. Though achieving great success in their original application case, it is still unclear whether those foundation models can be applied to other different downstream tasks. In this paper, we conduct a short survey on the current methods for discriminative dense recognition tasks, which are built on the pretrained foundation model. And we also provide some preliminary experimental analysis of an existing open-vocabulary segmentation method based on Stable Diffusion, which indicates the current way of deploying diffusion model for segmentation is not optimal. This aims to provide insights for future research on adopting foundation model for downstream task.
Technology trends play an important role in the hiring process for software and IT professionals. In a recent study of 591 software professionals in both hiring (130) and technical (558) roles, we found empirical support for a tendency to overemphasize technology trends in r\'esum\'es and the application process. 60% of the hiring professionals agreed that such trends would influence their job advertisements. Among the software professionals, 82% believed that using trending technologies in their daily work would make them more attractive for potential future employers. This phenomenon has previously been reported anecdotally and somewhat humorously under the label R\'esum\'e-Driven Development (RDD). Our article seeks to initiate a more serious debate about the consequences of RDD on software development practice. We explain how the phenomenon may constitute a harmful self-sustaining dynamic, and provide practical recommendations for both the hiring and applicant perspectives to change the current situation for the better.
Deep neural networks (DNNs), despite their impressive ability to generalize over-capacity networks, often rely heavily on malignant bias as shortcuts instead of task-related information for discriminative tasks. To address this problem, recent studies utilize auxiliary information related to the bias, which is rarely obtainable in practice, or sift through a handful of bias-free samples for debiasing. However, the success of these methods is not always guaranteed due to the unfulfilled presumptions. In this paper, we propose a novel method, Contrastive Debiasing via Generative Bias-transformation (CDvG), which works without explicit bias labels or bias-free samples. Motivated by our observation that not only discriminative models but also image translation models tend to focus on the malignant bias, CDvG employs an image translation model to transform one bias mode into another while preserving the task-relevant information. Additionally, the bias-transformed views are set against each other through contrastive learning to learn bias-invariant representations. Our method demonstrates superior performance compared to prior approaches, especially when bias-free samples are scarce or absent. Furthermore, CDvG can be integrated with the methods that focus on bias-free samples in a plug-and-play manner for additional enhancements, as demonstrated by diverse experimental results.
Our goal is for robots to follow natural language instructions like "put the towel next to the microwave." But getting large amounts of labeled data, i.e. data that contains demonstrations of tasks labeled with the language instruction, is prohibitive. In contrast, obtaining policies that respond to image goals is much easier, because any autonomous trial or demonstration can be labeled in hindsight with its final state as the goal. In this work, we contribute a method that taps into joint image- and goal- conditioned policies with language using only a small amount of language data. Prior work has made progress on this using vision-language models or by jointly training language-goal-conditioned policies, but so far neither method has scaled effectively to real-world robot tasks without significant human annotation. Our method achieves robust performance in the real world by learning an embedding from the labeled data that aligns language not to the goal image, but rather to the desired change between the start and goal images that the instruction corresponds to. We then train a policy on this embedding: the policy benefits from all the unlabeled data, but the aligned embedding provides an interface for language to steer the policy. We show instruction following across a variety of manipulation tasks in different scenes, with generalization to language instructions outside of the labeled data. Videos and code for our approach can be found on our website: //tiny.cc/grif .
Deploying service robots in our daily life, whether in restaurants, warehouses or hospitals, calls for the need to reason on the interactions happening in dense and dynamic scenes. In this paper, we present and benchmark three new approaches to model and predict multi-agent interactions in dense scenes, including the use of an intuitive qualitative representation. The proposed solutions take into account static and dynamic context to predict individual interactions. They exploit an input- and a temporal-attention mechanism, and are tested on medium and long-term time horizons. The first two approaches integrate different relations from the so-called Qualitative Trajectory Calculus (QTC) within a state-of-the-art deep neural network to create a symbol-driven neural architecture for predicting spatial interactions. The third approach implements a purely data-driven network for motion prediction, the output of which is post-processed to predict QTC spatial interactions. Experimental results on a popular robot dataset of challenging crowded scenarios show that the purely data-driven prediction approach generally outperforms the other two. The three approaches were further evaluated on a different but related human scenarios to assess their generalisation capability.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
In recent years, Graph Neural Networks (GNNs), which can naturally integrate node information and topological structure, have been demonstrated to be powerful in learning on graph data. These advantages of GNNs provide great potential to advance social recommendation since data in social recommender systems can be represented as user-user social graph and user-item graph; and learning latent factors of users and items is the key. However, building social recommender systems based on GNNs faces challenges. For example, the user-item graph encodes both interactions and their associated opinions; social relations have heterogeneous strengths; users involve in two graphs (e.g., the user-user social graph and the user-item graph). To address the three aforementioned challenges simultaneously, in this paper, we present a novel graph neural network framework (GraphRec) for social recommendations. In particular, we provide a principled approach to jointly capture interactions and opinions in the user-item graph and propose the framework GraphRec, which coherently models two graphs and heterogeneous strengths. Extensive experiments on two real-world datasets demonstrate the effectiveness of the proposed framework GraphRec. Our code is available at \url{//github.com/wenqifan03/GraphRec-WWW19}