Motivated by the need for computationally tractable spatial methods in neuroimaging studies, we develop a distributed and integrated framework for estimation and inference of Gaussian process model parameters with ultra-high-dimensional likelihoods. We propose a shift in viewpoint from whole to local data perspectives that is rooted in distributed model building and integrated estimation and inference. The framework's backbone is a computationally and statistically efficient integration procedure that simultaneously incorporates dependence within and between spatial resolutions in a recursively partitioned spatial domain. Statistical and computational properties of our distributed approach are investigated theoretically and in simulations. The proposed approach is used to extract new insights on autism spectrum disorder from the Autism Brain Imaging Data Exchange.
We present a method for end-to-end learning of Koopman surrogate models for optimal performance in control. In contrast to previous contributions that employ standard reinforcement learning (RL) algorithms, we use a training algorithm that exploits the potential differentiability of environments based on mechanistic simulation models. We evaluate the performance of our method by comparing it to that of other controller type and training algorithm combinations on a literature known eNMPC case study. Our method exhibits superior performance on this problem, thereby constituting a promising avenue towards more capable controllers that employ dynamic surrogate models.
This article presents MuMFiM, an open source application for multiscale modeling of fibrous materials on massively parallel computers. MuMFiM uses two scales to represent fibrous materials such as biological network materials (extracellular matrix, connective tissue, etc.). It is designed to make use of multiple levels of parallelism, including distributed parallelism of the macro and microscales as well as GPU accelerated data-parallelism of the microscale. Scaling results of the GPU accelerated microscale show that solving microscale problems concurrently on the GPU can lead to a 1000x speedup over the solution of a single RVE on the GPU. In addition, we show nearly optimal strong and weak scaling results of MuMFiM on up to 128 nodes of AiMOS (Rensselaer Polytechnic Institute) which is composed of IBM AC922 nodes with 6 Volta V100 GPU and 2 20 core Power 9 CPUs each. We also show how MuMFiM can be used to solve problems of interest to the broader engineering community, in particular providing an example of the facet capsule ligament (FCL) of the human spine undergoing uniaxial extension.
This paper presents a method for future motion prediction of multi-agent systems by including group formation information and future intent. Formation of groups depends on a physics-based clustering method that follows the agglomerative hierarchical clustering algorithm. We identify clusters that incorporate the minimum cost-to-go function of a relevant optimal control problem as a metric for clustering between the groups among agents, where groups with similar associated costs are assumed to be likely to move together. The cost metric accounts for proximity to other agents as well as the intended goal of each agent. An unscented Kalman filter based approach is used to update the established clusters as well as add new clusters when new information is obtained. Our approach is verified through non-trivial numerical simulations implementing the proposed algorithm on different datasets pertaining to a variety of scenarios and agents.
We propose a material design method via gradient-based optimization on compositions, overcoming the limitations of traditional methods: exhaustive database searches and conditional generation models. It optimizes inputs via backpropagation, aligning the model's output closely with the target property and facilitating the discovery of unlisted materials and precise property determination. Our method is also capable of adaptive optimization under new conditions without retraining. Applying to exploring high-Tc superconductors, we identified potential compositions beyond existing databases and discovered new hydrogen superconductors via conditional optimization. This method is versatile and significantly advances material design by enabling efficient, extensive searches and adaptability to new constraints.
Regression models for compositional data are common in several areas of knowledge. As in other classes of regression models, it is desirable to perform diagnostic analysis in these models using residuals that are approximately standard normally distributed. However, for regression models for compositional data, there has not been any multivariate residual that meets this requirement. In this work, we introduce a class of asymptotically standard normally distributed residuals for compositional data based on bootstrap. Monte Carlo simulation studies indicate that the distributions of the residuals of this class are well approximated by the standard normal distribution in small samples. An application to simulated data also suggests that one of the residuals of the proposed class is better to identify model misspecification than its competitors. Finally, the usefulness of the best residual of the proposed class is illustrated through an application on sleep stages. The class of residuals proposed here can also be used in other classes of multivariate regression models.
We integrate machine learning approaches with nonlinear time series analysis, specifically utilizing recurrence measures to classify various dynamical states emerging from time series. We implement three machine learning algorithms Logistic Regression, Random Forest, and Support Vector Machine for this study. The input features are derived from the recurrence quantification of nonlinear time series and characteristic measures of the corresponding recurrence networks. For training and testing we generate synthetic data from standard nonlinear dynamical systems and evaluate the efficiency and performance of the machine learning algorithms in classifying time series into periodic, chaotic, hyper-chaotic, or noisy categories. Additionally, we explore the significance of input features in the classification scheme and find that the features quantifying the density of recurrence points are the most relevant. Furthermore, we illustrate how the trained algorithms can successfully predict the dynamical states of two variable stars, SX Her and AC Her from the data of their light curves.
Ever since the seminal work of R. A. Fisher and F. Yates, factorial designs have been an important experimental tool to simultaneously estimate the effects of multiple treatment factors. In factorial designs, the number of treatment combinations grows exponentially with the number of treatment factors, which motivates the forward selection strategy based on the sparsity, hierarchy, and heredity principles for factorial effects. Although this strategy is intuitive and has been widely used in practice, its rigorous statistical theory has not been formally established. To fill this gap, we establish design-based theory for forward factor selection in factorial designs based on the potential outcome framework. We not only prove a consistency property for the factor selection procedure but also discuss statistical inference after factor selection. In particular, with selection consistency, we quantify the advantages of forward selection based on asymptotic efficiency gain in estimating factorial effects. With inconsistent selection in higher-order interactions, we propose two strategies and investigate their impact on subsequent inference. Our formulation differs from the existing literature on variable selection and post-selection inference because our theory is based solely on the physical randomization of the factorial design and does not rely on a correctly specified outcome model.
Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of $m$ new points, giving rise to $m$ conformal $p$-values. While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function. The results hold for arbitrary exchangeable scores, including adaptive ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.
In supervised learning, including regression and classification, conformal methods provide prediction sets for the outcome/label with finite sample coverage for any machine learning predictors. We consider here the case where such prediction sets come after a selection process. The selection process requires that the selected prediction sets be `informative' in a well defined sense. We consider both the classification and regression settings where the analyst may consider as informative only the sample with prediction label sets or prediction intervals small enough, excluding null values, or obeying other appropriate `monotone' constraints. While this covers many settings of possible interest in various applications, we develop a unified framework for building such informative conformal prediction sets while controlling the false coverage rate (FCR) on the selected sample. While conformal prediction sets after selection have been the focus of much recent literature in the field, the new introduced procedures, called InfoSP and InfoSCOP, are to our knowledge the first ones providing FCR control for informative prediction sets. We show the usefulness of our resulting procedures on real and simulated data.
The use of discretized variables in the development of prediction models is a common practice, in part because the decision-making process is more natural when it is based on rules created from segmented models. Although this practice is perhaps more common in medicine, it is extensible to any area of knowledge where a predictive model helps in decision-making. Therefore, providing researchers with a useful and valid categorization method could be a relevant issue when developing prediction models. In this paper, we propose a new general methodology that can be applied to categorize a predictor variable in any regression model where the response variable belongs to the exponential family distribution. Furthermore, it can be applied in any multivariate context, allowing to categorize more than one continuous covariate simultaneously. In addition, a computationally very efficient method is proposed to obtain the optimal number of categories, based on a pseudo-BIC proposal. Several simulation studies have been conducted in which the efficiency of the method with respect to both the location and the number of estimated cut-off points is shown. Finally, the categorization proposal has been applied to a real data set of 543 patients with chronic obstructive pulmonary disease from Galdakao Hospital's five outpatient respiratory clinics, who were followed up for 10 years. We applied the proposed methodology to jointly categorize the continuous variables six-minute walking test and forced expiratory volume in one second in a multiple Poisson generalized additive model for the response variable rate of the number of hospital admissions by years of follow-up. The location and number of cut-off points obtained were clinically validated as being in line with the categorizations used in the literature.