We investigate the problem of bandits with expert advice when the experts are fixed and known distributions over the actions. Improving on previous analyses, we show that the regret in this setting is controlled by information-theoretic quantities that measure the similarity between experts. In some natural special cases, this allows us to obtain the first regret bound for EXP4 that can get arbitrarily close to zero if the experts are similar enough. While for a different algorithm, we provide another bound that describes the similarity between the experts in terms of the KL-divergence, and we show that this bound can be smaller than the one of EXP4 in some cases. Additionally, we provide lower bounds for certain classes of experts showing that the algorithms we analyzed are nearly optimal in some cases.
Fair distribution of indivisible tasks with non-positive valuations (aka chores) has given rise to a large body of work in recent years. A popular approximate fairness notion is envy-freeness up to one item (EF1), which requires that any pairwise envy can be eliminated by the removal of a single item. While an EF1 and Pareto optimal (PO) allocation of goods always exists and can be computed via several well-known algorithms, even the existence of such solutions for chores remains open, to date. We take an epistemic approach utilizing information asymmetry by introducing dubious chores -- items that inflict no cost on receiving agents, but are perceived costly by others. On a technical level, dubious chores provide a more fine-grained approximation of envy-freeness -- compared to relaxations such as EF1 -- which enables progress towards addressing open problems on the existence and computation of EF1 and PO. In particular, we show that finding allocations with optimal number of dubious chores is computationally hard even for highly restricted classes of valuations. Nonetheless, we prove the existence of envy-free and PO allocations for $n$ agents with only $2n-2$ dubious chores and strengthen it to $n-1$ dubious chores in four special classes of valuations. Our experimental analysis demonstrate that baseline algorithms only require a relatively small number of dubious chores to achieve envy-freeness in practice.
When an exposure of interest is confounded by unmeasured factors, an instrumental variable (IV) can be used to identify and estimate certain causal contrasts. Identification of the marginal average treatment effect (ATE) from IVs relies on strong untestable structural assumptions. When one is unwilling to assert such structure, IVs can nonetheless be used to construct bounds on the ATE. Famously, Balke and Pearl (1997) proved tight bounds on the ATE for a binary outcome, in a randomized trial with noncompliance and no covariate information. We demonstrate how these bounds remain useful in observational settings with baseline confounders of the IV, as well as randomized trials with measured baseline covariates. The resulting bounds on the ATE are non-smooth functionals, and thus standard nonparametric efficiency theory is not immediately applicable. To remedy this, we propose (1) under a novel margin condition, influence function-based estimators of the bounds that can attain parametric convergence rates when the nuisance functions are modeled flexibly, and (2) estimators of smooth approximations of these bounds. We propose extensions to continuous outcomes, explore finite sample properties in simulations, and illustrate the proposed estimators in a randomized experiment studying the effects of vaccination encouragement on flu-related hospital visits.
Experts advising decision-makers are likely to display expertise which varies as a function of the problem instance. In practice, this may lead to sub-optimal or discriminatory decisions against minority cases. In this work we model such changes in depth and breadth of knowledge as a partitioning of the problem space into regions of differing expertise. We provide here new algorithms that explicitly consider and adapt to the relationship between problem instances and experts' knowledge. We first propose and highlight the drawbacks of a naive approach based on nearest neighbor queries. To address these drawbacks we then introduce a novel algorithm - expertise trees - that constructs decision trees enabling the learner to select appropriate models. We provide theoretical insights and empirically validate the improved performance of our novel approach on a range of problems for which existing methods proved to be inadequate.
Model-based approaches to reinforcement learning (MBRL) exhibit favorable performance in practice, but their theoretical guarantees in large spaces are mostly restricted to the setting when transition model is Gaussian or Lipschitz, and demands a posterior estimate whose representational complexity grows unbounded with time. In this work, we develop a novel MBRL method (i) which relaxes the assumptions on the target transition model to belong to a generic family of mixture models; (ii) is applicable to large-scale training by incorporating a compression step such that the posterior estimate consists of a Bayesian coreset of only statistically significant past state-action pairs; and (iii) exhibits a sublinear Bayesian regret. To achieve these results, we adopt an approach based upon Stein's method, which, under a smoothness condition on the constructed posterior and target, allows distributional distance to be evaluated in closed form as the kernelized Stein discrepancy (KSD). The aforementioned compression step is then computed in terms of greedily retaining only those samples which are more than a certain KSD away from the previous model estimate. Experimentally, we observe that this approach is competitive with several state-of-the-art RL methodologies, and can achieve up-to 50 percent reduction in wall clock time in some continuous control environments.
Pufferfish privacy (PP) is a generalization of differential privacy (DP), that offers flexibility in specifying sensitive information and integrates domain knowledge into the privacy definition. Inspired by the illuminating formulation of DP in terms of mutual information due to Cuff and Yu, this work explores PP through the lens of information theory. We provide an information-theoretic formulation of PP, termed mutual information PP (MI PP), in terms of the conditional mutual information between the mechanism and the secret, given the public information. We show that MI PP is implied by the regular PP and characterize conditions under which the reverse implication is also true, recovering the relationship between DP and its information-theoretic variant as a special case. We establish convexity, composability, and post-processing properties for MI PP mechanisms and derive noise levels for the Gaussian and Laplace mechanisms. The obtained mechanisms are applicable under relaxed assumptions and provide improved noise levels in some regimes. Lastly, applications to auditing privacy frameworks, statistical inference tasks, and algorithm stability are explored.
We provide a composite version of Ville's theorem that an event has zero measure if and only if there exists a nonnegative martingale which explodes to infinity when that event occurs. This is a classic result connecting measure-theoretic probability to the sequence-by-sequence game-theoretic probability, recently developed by Shafer and Vovk. Our extension of Ville's result involves appropriate composite generalizations of nonnegative martingales and measure-zero events: these are respectively provided by ``e-processes'', and a new inverse capital outer measure. We then develop a novel line-crossing inequality for sums of random variables which are only required to have a finite first moment, which we use to prove a composite version of the strong law of large numbers (SLLN). This allows us to show that violation of the SLLN is an event of outer measure zero and that our e-process explodes to infinity on every such violating sequence, while this is provably not achievable with a nonnegative (super)martingale.
We consider the design of sublinear space and query complexity algorithms for estimating the cost of a minimum spanning tree (MST) and the cost of a minimum traveling salesman (TSP) tour in a metric on $n$ points. We first consider the $o(n)$-space regime and show that, when the input is a stream of all $\binom{n}{2}$ entries of the metric, for any $\alpha \ge 2$, both MST and TSP cost can be $\alpha$-approximated using $\tilde{O}(n/\alpha)$ space, and that $\Omega(n/\alpha^2)$ space is necessary for this task. Moreover, we show that even if the streaming algorithm is allowed $p$ passes over a metric stream, it still requires $\tilde{\Omega}(\sqrt{n/\alpha p^2})$ space. We next consider the semi-streaming regime, where computing even the exact MST cost is easy and the main challenge is to estimate TSP cost to within a factor that is strictly better than $2$. We show that, if the input is a stream of all edges of the weighted graph that induces the underlying metric, for any $\varepsilon > 0$, any one-pass $(2-\varepsilon)$-approximation of TSP cost requires $\Omega(\varepsilon^2 n^2)$ space; on the other hand, there is an $\tilde{O}(n)$ space two-pass algorithm that approximates the TSP cost to within a factor of 1.96. Finally, we consider the query complexity of estimating metric TSP cost to within a factor that is strictly better than $2$, when the algorithm is given access to a matrix that specifies pairwise distances between all points. For MST estimation in this model, it is known that a $(1+\varepsilon)$-approximation is achievable with $\tilde{O}(n/\varepsilon^{O(1)})$ queries. We design an algorithm that performs $\tilde{O}(n^{1.5})$ distance queries and achieves a strictly better than $2$-approximation when either the metric is known to contain a spanning tree supported on weight-$1$ edges or the algorithm is given access to a minimum spanning tree of the graph.
Graph neural networks are often used to model interacting dynamical systems since they gracefully scale to systems with a varying and high number of agents. While there has been much progress made for deterministic interacting systems, modeling is much more challenging for stochastic systems in which one is interested in obtaining a predictive distribution over future trajectories. Existing methods are either computationally slow since they rely on Monte Carlo sampling or make simplifying assumptions such that the predictive distribution is unimodal. In this work, we present a deep state-space model which employs graph neural networks in order to model the underlying interacting dynamical system. The predictive distribution is multimodal and has the form of a Gaussian mixture model, where the moments of the Gaussian components can be computed via deterministic moment matching rules. Our moment matching scheme can be exploited for sample-free inference, leading to more efficient and stable training compared to Monte Carlo alternatives. Furthermore, we propose structured approximations to the covariance matrices of the Gaussian components in order to scale up to systems with many agents. We benchmark our novel framework on two challenging autonomous driving datasets. Both confirm the benefits of our method compared to state-of-the-art methods. We further demonstrate the usefulness of our individual contributions in a carefully designed ablation study and provide a detailed runtime analysis of our proposed covariance approximations. Finally, we empirically demonstrate the generalization ability of our method by evaluating its performance on unseen scenarios.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.