Nurmuhammad et al. developed the Sinc-Nystr\"{o}m methods for initial value problems in which the solutions exhibit exponential decay end behavior. In these methods, the Single-Exponential (SE) transformation or the Double-Exponential (DE) transformation is combined with the Sinc approximation. Hara and Okayama improved on these transformations to attain a better convergence rate, which was later supported by theoretical error analyses. However, these methods have a computational drawback owing to the inclusion of a special function in the basis functions. To address this issue, Okayama and Hara proposed Sinc-collocation methods, which do not include any special function in the basis functions. This study conducts error analyses of these methods.
We establish optimal error bounds on time-splitting methods for the nonlinear Schr\"odinger equation with low regularity potential and typical power-type nonlinearity $ f(\rho) = \rho^\sigma $, where $ \rho:=|\psi|^2 $ is the density with $ \psi $ the wave function and $ \sigma > 0 $ the exponent of the nonlinearity. For the first-order Lie-Trotter time-splitting method, optimal $ L^2 $-norm error bound is proved for $L^\infty$-potential and $ \sigma > 0 $, and optimal $H^1$-norm error bound is obtained for $ W^{1, 4} $-potential and $ \sigma \geq 1/2 $. For the second-order Strang time-splitting method, optimal $ L^2 $-norm error bound is established for $H^2$-potential and $ \sigma \geq 1 $, and optimal $H^1$-norm error bound is proved for $H^3$-potential and $ \sigma \geq 3/2 $. Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called \textit{regularity compensation oscillation} (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.
Introduction: Oblique Target-rotation in the context of exploratory factor analysis is a relevant method for the investigation of the oblique independent clusters model. It was argued that minimizing single cross-loadings by means of target rotation may lead to large effects of sampling error on the target rotated factor solutions. Method: In order to minimize effects of sampling error on results of Target-rotation we propose to compute the mean cross-loadings for each block of salient loadings of the independent clusters model and to perform target rotation for the block-wise mean cross-loadings. The resulting transformation-matrix is than applied to the complete unrotated loading matrix in order to produce mean Target-rotated factors. Results: A simulation study based on correlated independent factor models revealed that mean oblique Target-rotation resulted in smaller negative bias of factor inter-correlations than conventional Target-rotation based on single loadings, especially when sample size was small and when the number of factors was large. An empirical example revealed that the similarity of Target-rotated factors computed for small subsamples with Target-rotated factors of the total sample was more pronounced for mean Target-rotation than for conventional Target-rotation. Discussion: Mean Target-rotation can be recommended in the context of oblique independent factor models, especially for small samples. An R-script and an SPSS-script for this form of Target-rotation are provided in the Appendix.
This study addresses a class of linear mixed-integer programming (MILP) problems that involve uncertainty in the objective function parameters. The parameters are assumed to form a random vector, whose probability distribution can only be observed through a finite training data set. Unlike most of the related studies in the literature, we also consider uncertainty in the underlying data set. The data uncertainty is described by a set of linear constraints for each random sample, and the uncertainty in the distribution (for a fixed realization of data) is defined using a type-1 Wasserstein ball centered at the empirical distribution of the data. The overall problem is formulated as a three-level distributionally robust optimization (DRO) problem. First, we prove that the three-level problem admits a single-level MILP reformulation, if the class of loss functions is restricted to biaffine functions. Secondly, it turns out that for several particular forms of data uncertainty, the outlined problem can be solved reasonably fast by leveraging the nominal MILP problem. Finally, we conduct a computational study, where the out-of-sample performance of our model and computational complexity of the proposed MILP reformulation are explored numerically for several application domains.
We describe an efficient method for the approximation of functions using radial basis functions (RBFs), and extend this to a solver for boundary value problems on irregular domains. The method is based on RBFs with centers on a regular grid defined on a bounding box, with some of the centers outside the computational domain. The equation is discretized using collocation with oversampling, with collocation points inside the domain only, resulting in a rectangular linear system to be solved in a least squares sense. The goal of this paper is the efficient solution of that rectangular system. We show that the least squares problem splits into a regular part, which can be expedited with the FFT, and a low rank perturbation, which is treated separately with a direct solver. The rank of the perturbation is influenced by the irregular shape of the domain and by the weak enforcement of boundary conditions at points along the boundary. The solver extends the AZ algorithm which was previously proposed for function approximation involving frames and other overcomplete sets. The solver has near optimal log-linear complexity for univariate problems, and loses optimality for higher-dimensional problems but remains faster than a direct solver.
We study the continuous multi-reference alignment model of estimating a periodic function on the circle from noisy and circularly-rotated observations. Motivated by analogous high-dimensional problems that arise in cryo-electron microscopy, we establish minimax rates for estimating generic signals that are explicit in the dimension $K$. In a high-noise regime with noise variance $\sigma^2 \gtrsim K$, for signals with Fourier coefficients of roughly uniform magnitude, the rate scales as $\sigma^6$ and has no further dependence on the dimension. This rate is achieved by a bispectrum inversion procedure, and our analyses provide new stability bounds for bispectrum inversion that may be of independent interest. In a low-noise regime where $\sigma^2 \lesssim K/\log K$, the rate scales instead as $K\sigma^2$, and we establish this rate by a sharp analysis of the maximum likelihood estimator that marginalizes over latent rotations. A complementary lower bound that interpolates between these two regimes is obtained using Assouad's hypercube lemma. We extend these analyses also to signals whose Fourier coefficients have a slow power law decay.
A Milstein-type method is proposed for some highly non-linear non-autonomous time-changed stochastic differential equations (SDEs). The spatial variables in the coefficients of the time-changed SDEs satisfy the super-linear growth condition and the temporal variables obey some H\"older's continuity condition. The strong convergence in the finite time is studied and the convergence order is obtained.
The numerical solution of continuum damage mechanics (CDM) problems suffers from critical points during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. Displacement-controlled arc-length methods were developed to address these challenges, but are currently applicable only to geometrically non-linear problems. In this work, we present a novel displacement-controlled arc-length (DAL) method for CDM problems in both local damage and non-local gradient damage versions. The analytical tangent matrix is derived for the DAL solver in both of the local and the non-local models. In addition, several consistent and non-consistent implementation algorithms are proposed, implemented, and evaluated. Unlike existing force-controlled arc-length solvers that monolithically scale the external force vector, the proposed method treats the external force vector as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. Such a flexible approach renders the proposed solver to be substantially more efficient and versatile than existing solvers used in CDM problems. The considerable advantages of the proposed DAL algorithm are demonstrated against several benchmark 1D problems with sharp snap-backs and 2D examples with various boundary conditions and loading scenarios, where the proposed method drastically outperforms existing conventional approaches in terms of accuracy, computational efficiency, and the ability to predict the complete equilibrium path including all critical points.
We study $L_2$-approximation problems in the worst case setting in the weighted Korobov spaces $H_{d,\a,{\bm \ga}}$ with parameters $1\ge \ga_1\ge \ga_2\ge \cdots\ge 0$ and $\frac1 2<\az_1\le \az_2\le \cdots$. We consider the worst case error of algorithms that use finitely many arbitrary continuous linear functionals. We discuss the strongly polynomial tractability (SPT), polynomial tractability (PT), and $(t_1,t_2)$-weak tractability ($(t_1,t_2)$-WT) for all $t_1>1$ and $t_2>0$ under the absolute or normalized error criterion. In particular, we obtain the matching necessary and sufficient condition for SPT or PT in terms of the parameters.
The Bayesian inference approach is widely used to tackle inverse problems due to its versatile and natural ability to handle ill-posedness. However, it often faces challenges when dealing with situations involving continuous fields or large-resolution discrete representations (high-dimensional). Moreover, the prior distribution of unknown parameters is commonly difficult to be determined. In this study, an Operator Learning-based Generative Adversarial Network (OL-GAN) is proposed and integrated into the Bayesian inference framework to handle these issues. Unlike most Bayesian approaches, the distinctive characteristic of the proposed method is to learn the joint distribution of parameters and responses. By leveraging the trained generative model, the posteriors of the unknown parameters can theoretically be approximated by any sampling algorithm (e.g., Markov Chain Monte Carlo, MCMC) in a low-dimensional latent space shared by the components of the joint distribution. The latent space is typically a simple and easy-to-sample distribution (e.g., Gaussian, uniform), which significantly reduces the computational cost associated with the Bayesian inference while avoiding prior selection concerns. Furthermore, incorporating operator learning enables resolution-independent in the generator. Predictions can be obtained at desired coordinates, and inversions can be performed even if the observation data are misaligned with the training data. Finally, the effectiveness of the proposed method is validated through several numerical experiments.
Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex constrained optimization that sequentially minimizes majorizing surrogates of the objective function in each block coordinate while the other coordinates are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We establish that for general constrained nonconvex optimization, BMM with strongly convex surrogates can produce an $\epsilon$-stationary point within $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$ iterations and asymptotically converges to the set of stationary points. Furthermore, we propose a trust-region variant of BMM that can handle surrogates that are only convex and still obtain the same iteration complexity and asymptotic stationarity. These results hold robustly even when the convex sub-problems are inexactly solved as long as the optimality gaps are summable. As an application, we show that a regularized version of the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung has iteration complexity of $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$. The same result holds for a wide class of regularized nonnegative tensor decomposition algorithms as well as the classical block projected gradient descent algorithm. These theoretical results are validated through various numerical experiments.