亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When solving noisy linear systems Ax = b + c, the theoretical and empirical performance of stochastic iterative methods, such as the Randomized Kaczmarz algorithm, depends on the noise level. However, if there are a small number of highly corrupt measurements, one can instead use quantile-based methods to guarantee convergence to the solution x of the system, despite the presence of noise. Such methods require the computation of the entire residual vector, which may not be desirable or even feasible in some cases. In this work, we analyze the sub-sampled quantile Randomized Kaczmarz (sQRK) algorithm for solving large-scale linear systems which utilize a sub-sampled residual to approximate the quantile threshold. We prove that this method converges to the unique solution to the linear system and provide numerical experiments that support our theoretical findings. We additionally remark on the extremely small sample size case and demonstrate the importance of interplay between the choice of quantile and subset size.

相關內容

For Arithmetization-Oriented ciphers and hash functions Gr\"obner basis attacks are generally considered as the most competitive attack vector. Unfortunately, the complexity of Gr\"obner basis algorithms is only understood for special cases, and it is needless to say that these cases do not apply to most cryptographic polynomial systems. Therefore, cryptographers have to resort to experiments, extrapolations and hypotheses to assess the security of their designs. One established measure to quantify the complexity of linear algebra-based Gr\"obner basis algorithms is the so-called solving degree. Caminata \& Gorla revealed that under a certain genericity condition on a polynomial system the solving degree is always upper bounded by the Castelnuovo-Mumford regularity and henceforth by the Macaulay bound, which only takes the degrees and number of variables of the input polynomials into account. In this paper we extend their framework to iterated polynomial systems, the standard polynomial model for symmetric ciphers and hash functions. In particular, we prove solving degree bounds for various attacks on MiMC, Feistel-MiMC, Feistel-MiMC-Hash, Hades and GMiMC. Our bounds fall in line with the hypothesized complexity of Gr\"obner basis attacks on these designs, and to the best of our knowledge this is the first time that a mathematical proof for these complexities is provided. Moreover, by studying polynomials with degree falls we can prove lower bounds on the Castelnuovo-Mumford regularity for attacks on MiMC, Feistel-MiMC and Feistel-MiMC-Hash provided that only a few solutions of the corresponding iterated polynomial system originate from the base field. Hence, regularity-based solving degree estimations can never surpass a certain threshold, a desirable property for cryptographic polynomial systems.

Scientific experimentation involves an iterative process of creating hypotheses, designing experiments, running experiments, and analyzing the results. Can we build AI research agents to perform these long-horizon tasks? To take a step towards building and evaluating research agents on such open-ended decision-making tasks, we focus on the problem of machine learning engineering: given a task description and a dataset, build a high-performing model. In this paper, we propose MLAgentBench, a suite of ML tasks for benchmarking AI research agents. Agents can perform actions like reading/writing files, executing code, and inspecting outputs. With these actions, agents could run experiments, analyze the results, and modify the code of entire machine learning pipelines, such as data processing, architecture, training processes, etc. The benchmark then automatically evaluates the agent's performance objectively over various metrics related to performance and efficiency. We also design an LLM-based research agent to automatically perform experimentation loops in such an environment. Empirically, we find that a GPT-4-based research agent can feasibly build compelling ML models over many tasks in MLAgentBench, displaying highly interpretable plans and actions. However, the success rates vary considerably; they span from almost 90\% on well-established older datasets to as low as 10\% on recent Kaggle Challenges -- unavailable during the LLM model's pretraining -- and even 0\% on newer research challenges like BabyLM. Finally, we identify several key challenges for LLM-based research agents such as long-term planning and hallucination. Our code is released at //github.com/snap-stanford/MLAgentBench.

Higher order artificial neurons whose outputs are computed by applying an activation function to a higher order multinomial function of the inputs have been considered in the past, but did not gain acceptance due to the extra parameters and computational cost. However, higher order neurons have significantly greater learning capabilities since the decision boundaries of higher order neurons can be complex surfaces instead of just hyperplanes. The boundary of a single quadratic neuron can be a general hyper-quadric surface allowing it to learn many nonlinearly separable datasets. Since quadratic forms can be represented by symmetric matrices, only $\frac{n(n+1)}{2}$ additional parameters are needed instead of $n^2$. A quadratic Logistic regression model is first presented. Solutions to the XOR problem with a single quadratic neuron are considered. The complete vectorized equations for both forward and backward propagation in feedforward networks composed of quadratic neurons are derived. A reduced parameter quadratic neural network model with just $ n $ additional parameters per neuron that provides a compromise between learning ability and computational cost is presented. Comparison on benchmark classification datasets are used to demonstrate that a final layer of quadratic neurons enables networks to achieve higher accuracy with significantly fewer hidden layer neurons. In particular this paper shows that any dataset composed of $C$ bounded clusters can be separated with only a single layer of $C$ quadratic neurons.

Few neural architectures lend themselves to provable learning with gradient based methods. One popular model is the single-index model, in which labels are produced by composing an unknown linear projection with a possibly unknown scalar link function. Learning this model with SGD is relatively well-understood, whereby the so-called information exponent of the link function governs a polynomial sample complexity rate. However, extending this analysis to deeper or more complicated architectures remains challenging. In this work, we consider single index learning in the setting of symmetric neural networks. Under analytic assumptions on the activation and maximum degree assumptions on the link function, we prove that gradient flow recovers the hidden planted direction, represented as a finitely supported vector in the feature space of power sum polynomials. We characterize a notion of information exponent adapted to our setting that controls the efficiency of learning.

We introduce Adaptive Functional Principal Component Analysis, a novel method to capture directions of variation in functional data that exhibit sharp changes in smoothness. We first propose a new adaptive scatterplot smoothing technique that is fast and scalable, and then integrate this technique into a probabilistic FPCA framework to adaptively smooth functional principal components. Our simulation results show that our approach is better able to model functional data with sharp changes in smoothness compared to standard approaches. We are motivated by the need to identify coordinated patterns of brain activity across multiple neurons during reaching movements prompted by an auditory cue, which enables understanding of the dynamics in the brain during dexterous movement. Our proposed method captures the underlying biological mechanisms that arise in data obtained from a mouse experiment focused on voluntary reaching movements, offering more interpretable activation patterns that reflect sharp changes in neural activity following the cue. We develop accompanying publicly available software for our proposed methodology, along with implementations to reproduce our results.

We develop a general theory to optimize the frequentist regret for sequential learning problems, where efficient bandit and reinforcement learning algorithms can be derived from unified Bayesian principles. We propose a novel optimization approach to generate "algorithmic beliefs" at each round, and use Bayesian posteriors to make decisions. The optimization objective to create "algorithmic beliefs," which we term "Algorithmic Information Ratio," represents an intrinsic complexity measure that effectively characterizes the frequentist regret of any algorithm. To the best of our knowledge, this is the first systematical approach to make Bayesian-type algorithms prior-free and applicable to adversarial settings, in a generic and optimal manner. Moreover, the algorithms are simple and often efficient to implement. As a major application, we present a novel algorithm for multi-armed bandits that achieves the "best-of-all-worlds" empirical performance in the stochastic, adversarial, and non-stationary environments. And we illustrate how these principles can be used in linear bandits, bandit convex optimization, and reinforcement learning.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司