亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many important qualities of plasma confinement devices can be determined via the Poincar\'e plot of a symplectic return map. These qualities include the locations of periodic orbits, magnetic islands, and chaotic regions of phase space. However, every evaluation of the magnetic return map requires solving an ODE, meaning a detailed Poincar\'e plot can be expensive to create. Here, we propose a kernel-based method of learning a single labeling function that is approximately invariant under the symplectic map. From the labeling function, we can recover the locations of invariant circles, islands, and chaos with few evaluations of the underlying symplectic map. Additionally, the labeling function comes with a residual, which serves as a measure of how invariant the label function is, and therefore as an indirect measure of chaos and map complexity.

相關內容

Medical imaging diagnosis increasingly relies on Machine Learning (ML) models. This is a task that is often hampered by severely imbalanced datasets, where positive cases can be quite rare. Their use is further compromised by their limited interpretability, which is becoming increasingly important. While post-hoc interpretability techniques such as SHAP and LIME have been used with some success on so-called black box models, the use of inherently understandable models makes such endeavors more fruitful. This paper addresses these issues by demonstrating how a relatively new synthetic data generation technique, STEM, can be used to produce data to train models produced by Grammatical Evolution (GE) that are inherently understandable. STEM is a recently introduced combination of the Synthetic Minority Oversampling Technique (SMOTE), Edited Nearest Neighbour (ENN), and Mixup; it has previously been successfully used to tackle both between class and within class imbalance issues. We test our technique on the Digital Database for Screening Mammography (DDSM) and the Wisconsin Breast Cancer (WBC) datasets and compare Area Under the Curve (AUC) results with an ensemble of the top three performing classifiers from a set of eight standard ML classifiers with varying degrees of interpretability. We demonstrate that the GE-derived models present the best AUC while still maintaining interpretable solutions.

Realistic physics engines play a crucial role for learning to manipulate deformable objects such as garments in simulation. By doing so, researchers can circumvent challenges such as sensing the deformation of the object in the realworld. In spite of the extensive use of simulations for this task, few works have evaluated the reality gap between deformable object simulators and real-world data. We present a benchmark dataset to evaluate the sim-to-real gap in cloth manipulation. The dataset is collected by performing a dynamic as well as a quasi-static cloth manipulation task involving contact with a rigid table. We use the dataset to evaluate the reality gap, computational time, and simulation stability of four popular deformable object simulators: MuJoCo, Bullet, Flex, and SOFA. Additionally, we discuss the benefits and drawbacks of each simulator. The benchmark dataset is open-source. Supplementary material, videos, and code, can be found at //sites.google.com/view/cloth-sim2real-benchmark.

This paper presents a novel operational matrix method to accelerate the training of fractional Physics-Informed Neural Networks (fPINNs). Our approach involves a non-uniform discretization of the fractional Caputo operator, facilitating swift computation of fractional derivatives within Caputo-type fractional differential problems with $0<\alpha<1$. In this methodology, the operational matrix is precomputed, and during the training phase, automatic differentiation is replaced with a matrix-vector product. While our methodology is compatible with any network, we particularly highlight its successful implementation in PINNs, emphasizing the enhanced accuracy achieved when utilizing the Legendre Neural Block (LNB) architecture. LNB incorporates Legendre polynomials into the PINN structure, providing a significant boost in accuracy. The effectiveness of our proposed method is validated across diverse differential equations, including Delay Differential Equations (DDEs) and Systems of Differential Algebraic Equations (DAEs). To demonstrate its versatility, we extend the application of the method to systems of differential equations, specifically addressing nonlinear Pantograph fractional-order DDEs/DAEs. The results are supported by a comprehensive analysis of numerical outcomes.

In black-box optimization, noise in the objective function is inevitable. Noise disrupts the ranking of candidate solutions in comparison-based optimization, possibly deteriorating the search performance compared with a noiseless scenario. Explicit averaging takes the sample average of noisy objective function values and is widely used as a simple and versatile noise-handling technique. Although it is suitable for various applications, it is ineffective if the mean is not finite. We theoretically reveal that explicit averaging has a negative effect on the estimation of ground-truth rankings when assuming stably distributed noise without a finite mean. Alternatively, sign averaging is proposed as a simple but robust noise-handling technique. We theoretically prove that the sign averaging estimates the order of the medians of the noisy objective function values of a pair of points with arbitrarily high probability as the number of samples increases. Its advantages over explicit averaging and its robustness are also confirmed through numerical experiments.

Multidimensional item response theory (MIRT) models have generated increasing interest in the psychometrics literature. Efficient approaches for estimating MIRT models with dichotomous responses have been developed, but constructing an equally efficient and robust algorithm for polytomous models has received limited attention. To address this gap, this paper presents a novel Gaussian variational estimation algorithm for the multidimensional generalized partial credit model (MGPCM). The proposed algorithm demonstrates both fast and accurate performance, as illustrated through a series of simulation studies and two real data analyses.

Establishing evaluation schemes for spoken dialogue systems is important, but it can also be challenging. While subjective evaluations are commonly used in user experiments, objective evaluations are necessary for research comparison and reproducibility. To address this issue, we propose a framework for indirectly but objectively evaluating systems based on users' behaviors. In this paper, to this end, we investigate the relationship between user behaviors and subjective evaluation scores in social dialogue tasks: attentive listening, job interview, and first-meeting conversation. The results reveal that in dialogue tasks where user utterances are primary, such as attentive listening and job interview, indicators like the number of utterances and words play a significant role in evaluation. Observing disfluency also can indicate the effectiveness of formal tasks, such as job interview. On the other hand, in dialogue tasks with high interactivity, such as first-meeting conversation, behaviors related to turn-taking, like average switch pause length, become more important. These findings suggest that selecting appropriate user behaviors can provide valuable insights for objective evaluation in each social dialogue task.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司