Knowing the position of the robot in the world is crucial for navigation. Nowadays, Bayesian filters, such as Kalman and particle-based, are standard approaches in mobile robotics. Recently, end-to-end learning has allowed for scaling-up to high-dimensional inputs and improved generalization. However, there are still limitations to providing reliable laser navigation. Here we show a proof-of-concept of the predictive processing-inspired approach to perception applied for localization and navigation using laser sensors, without the need for odometry. We learn the generative model of the laser through self-supervised learning and perform both online state-estimation and navigation through stochastic gradient descent on the variational free-energy bound. We evaluated the algorithm on a mobile robot (TIAGo Base) with a laser sensor (SICK) in Gazebo. Results showed improved state-estimation performance when comparing to a state-of-the-art particle filter in the absence of odometry. Furthermore, conversely to standard Bayesian estimation approaches our method also enables the robot to navigate when providing the desired goal by inferring the actions that minimize the prediction error.
We present novel upper and lower bounds to estimate the collision probability of motion plans for autonomous agents with discrete-time linear Gaussian dynamics. Motion plans generated by planning algorithms cannot be perfectly executed by autonomous agents in reality due to the inherent uncertainties in the real world. Estimating collision probability is crucial to characterize the safety of trajectories and plan risk optimal trajectories. Our approach is an application of standard results in probability theory including the inequalities of Hunter, Kounias, Frechet, and Dawson. Using a ground robot navigation example, we numerically demonstrate that our method is considerably faster than the naive Monte Carlo sampling method and the proposed bounds are significantly less conservative than Boole's bound commonly used in the literature.
Closing the gap between high data rates and low delay in real-time streaming applications is a major challenge in advanced communication systems. While adaptive network coding schemes have the potential of balancing rate and delay in real-time, they often rely on prediction of the channel behavior. In practice, such prediction is based on delayed feedback, making it difficult to acquire causally, particularly when the underlying channel model is unknown. In this work, we propose a deep learning-based noise prediction (DeepNP) algorithm, which augments the recently proposed adaptive and causal random linear network coding scheme with a dedicated deep neural network, that learns to carry out noise prediction from data. This neural augmentation is utilized to maximize the throughput while minimizing in-order delivery delay of the network coding scheme, and operate in a channel-model-agnostic manner. We numerically show that performance can dramatically increase by the learned prediction of the channel noise rate. In particular, we demonstrate that DeepNP gains up to a factor of four in mean and maximum delay and a factor two in throughput compared with statistic-based network coding approaches.
We embark on a hitherto unreported problem of an autonomous robot (self-driving car) navigating in dynamic scenes in a manner that reduces its localization error and eventual cumulative drift or Absolute Trajectory Error, which is pronounced in such dynamic scenes. With the hugely popular Velodyne-16 3D LIDAR as the main sensing modality, and the accurate LIDAR-based Localization and Mapping algorithm, LOAM, as the state estimation framework, we show that in the absence of a navigation policy, drift rapidly accumulates in the presence of moving objects. To overcome this, we learn actions that lead to drift-minimized navigation through a suitable set of reward and penalty functions. We use Proximal Policy Optimization, a class of Deep Reinforcement Learning methods, to learn the actions that result in drift-minimized trajectories. We show by extensive comparisons on a variety of synthetic, yet photo-realistic scenes made available through the CARLA Simulator the superior performance of the proposed framework vis-a-vis methods that do not adopt such policies.
Message-passing algorithms based on the Belief Propagation (BP) equations constitute a well-known distributed computational scheme. It is exact on tree-like graphical models and has also proven to be effective in many problems defined on graphs with loops (from inference to optimization, from signal processing to clustering). The BP-based scheme is fundamentally different from stochastic gradient descent (SGD), on which the current success of deep networks is based. In this paper, we present and adapt to mini-batch training on GPUs a family of BP-based message-passing algorithms with a reinforcement field that biases distributions towards locally entropic solutions. These algorithms are capable of training multi-layer neural networks with discrete weights and activations with performance comparable to SGD-inspired heuristics (BinaryNet) and are naturally well-adapted to continual learning. Furthermore, using these algorithms to estimate the marginals of the weights allows us to make approximate Bayesian predictions that have higher accuracy than point-wise solutions.
Combining discrete probability distributions and combinatorial optimization problems with neural network components has numerous applications but poses several challenges. We propose Implicit Maximum Likelihood Estimation (I-MLE), a framework for end-to-end learning of models combining discrete exponential family distributions and differentiable neural components. I-MLE is widely applicable as it only requires the ability to compute the most probable states and does not rely on smooth relaxations. The framework encompasses several approaches such as perturbation-based implicit differentiation and recent methods to differentiate through black-box combinatorial solvers. We introduce a novel class of noise distributions for approximating marginals via perturb-and-MAP. Moreover, we show that I-MLE simplifies to maximum likelihood estimation when used in some recently studied learning settings that involve combinatorial solvers. Experiments on several datasets suggest that I-MLE is competitive with and often outperforms existing approaches which rely on problem-specific relaxations.
Breakthroughs in machine learning in the last decade have led to `digital intelligence', i.e. machine learning models capable of learning from vast amounts of labeled data to perform several digital tasks such as speech recognition, face recognition, machine translation and so on. The goal of this thesis is to make progress towards designing algorithms capable of `physical intelligence', i.e. building intelligent autonomous navigation agents capable of learning to perform complex navigation tasks in the physical world involving visual perception, natural language understanding, reasoning, planning, and sequential decision making. Despite several advances in classical navigation methods in the last few decades, current navigation agents struggle at long-term semantic navigation tasks. In the first part of the thesis, we discuss our work on short-term navigation using end-to-end reinforcement learning to tackle challenges such as obstacle avoidance, semantic perception, language grounding, and reasoning. In the second part, we present a new class of navigation methods based on modular learning and structured explicit map representations, which leverage the strengths of both classical and end-to-end learning methods, to tackle long-term navigation tasks. We show that these methods are able to effectively tackle challenges such as localization, mapping, long-term planning, exploration and learning semantic priors. These modular learning methods are capable of long-term spatial and semantic understanding and achieve state-of-the-art results on various navigation tasks.
Click-through rate (CTR) prediction is one of the fundamental tasks for e-commerce search engines. As search becomes more personalized, it is necessary to capture the user interest from rich behavior data. Existing user behavior modeling algorithms develop different attention mechanisms to emphasize query-relevant behaviors and suppress irrelevant ones. Despite being extensively studied, these attentions still suffer from two limitations. First, conventional attentions mostly limit the attention field only to a single user's behaviors, which is not suitable in e-commerce where users often hunt for new demands that are irrelevant to any historical behaviors. Second, these attentions are usually biased towards frequent behaviors, which is unreasonable since high frequency does not necessarily indicate great importance. To tackle the two limitations, we propose a novel attention mechanism, termed Kalman Filtering Attention (KFAtt), that considers the weighted pooling in attention as a maximum a posteriori (MAP) estimation. By incorporating a priori, KFAtt resorts to global statistics when few user behaviors are relevant. Moreover, a frequency capping mechanism is incorporated to correct the bias towards frequent behaviors. Offline experiments on both benchmark and a 10 billion scale real production dataset, together with an Online A/B test, show that KFAtt outperforms all compared state-of-the-arts. KFAtt has been deployed in the ranking system of a leading e commerce website, serving the main traffic of hundreds of millions of active users everyday.
We present R-LINS, a lightweight robocentric lidar-inertial state estimator, which estimates robot ego-motion using a 6-axis IMU and a 3D lidar in a tightly-coupled scheme. To achieve robustness and computational efficiency even in challenging environments, an iterated error-state Kalman filter (ESKF) is designed, which recursively corrects the state via repeatedly generating new corresponding feature pairs. Moreover, a novel robocentric formulation is adopted in which we reformulate the state estimator concerning a moving local frame, rather than a fixed global frame as in the standard world-centric lidar-inertial odometry(LIO), in order to prevent filter divergence and lower computational cost. To validate generalizability and long-time practicability, extensive experiments are performed in indoor and outdoor scenarios. The results indicate that R-LINS outperforms lidar-only and loosely-coupled algorithms, and achieve competitive performance as the state-of-the-art LIO with close to an order-of-magnitude improvement in terms of speed.
This paper introduces a novel neural network-based reinforcement learning approach for robot gaze control. Our approach enables a robot to learn and to adapt its gaze control strategy for human-robot interaction neither with the use of external sensors nor with human supervision. The robot learns to focus its attention onto groups of people from its own audio-visual experiences, independently of the number of people, of their positions and of their physical appearances. In particular, we use a recurrent neural network architecture in combination with Q-learning to find an optimal action-selection policy; we pre-train the network using a simulated environment that mimics realistic scenarios that involve speaking/silent participants, thus avoiding the need of tedious sessions of a robot interacting with people. Our experimental evaluation suggests that the proposed method is robust against parameter estimation, i.e. the parameter values yielded by the method do not have a decisive impact on the performance. The best results are obtained when both audio and visual information is jointly used. Experiments with the Nao robot indicate that our framework is a step forward towards the autonomous learning of socially acceptable gaze behavior.
This paper presents a safety-aware learning framework that employs an adaptive model learning method together with barrier certificates for systems with possibly nonstationary agent dynamics. To extract the dynamic structure of the model, we use a sparse optimization technique, and the resulting model will be used in combination with control barrier certificates which constrain feedback controllers only when safety is about to be violated. Under some mild assumptions, solutions to the constrained feedback-controller optimization are guaranteed to be globally optimal, and the monotonic improvement of a feedback controller is thus ensured. In addition, we reformulate the (action-)value function approximation to make any kernel-based nonlinear function estimation method applicable. We then employ a state-of-the-art kernel adaptive filtering technique for the (action-)value function approximation. The resulting framework is verified experimentally on a brushbot, whose dynamics is unknown and highly complex.