亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work proposes a hyper-reduction method for nonlinear parametric dynamical systems characterized by gradient fields such as Hamiltonian systems and gradient flows. The gradient structure is associated with conservation of invariants or with dissipation and hence plays a crucial role in the description of the physical properties of the system. Traditional hyper-reduction of nonlinear gradient fields yields efficient approximations that, however, lack the gradient structure. We focus on Hamiltonian gradients and we propose to first decompose the nonlinear part of the Hamiltonian, mapped into a suitable reduced space, into the sum of d terms, each characterized by a sparse dependence on the system state. Then, the hyper-reduced approximation is obtained via discrete empirical interpolation (DEIM) of the Jacobian of the derived d-valued nonlinear function. The resulting hyper-reduced model retains the gradient structure and its computationally complexity is independent of the size of the full model. Moreover, a priori error estimates show that the hyper-reduced model converges to the reduced model and the Hamiltonian is asymptotically preserved. Whenever the nonlinear Hamiltonian gradient is not globally reducible, i.e. its evolution requires high-dimensional DEIM approximation spaces, an adaptive strategy is performed. This consists in updating the hyper-reduced Hamiltonian via a low-rank correction of the DEIM basis. Numerical tests demonstrate the applicability of the proposed approach to general nonlinear operators and runtime speedups compared to the full and the reduced models.

相關內容

We are interested in numerical algorithms for computing the electrical field generated by a charge distribution localized on scale $l$ in an infinite heterogeneous correlated random medium, in a situation where the medium is only known in a box of diameter $L\gg l$ around the support of the charge. We show that the algorithm of Lu, Otto and Wang, suggesting optimal Dirichlet boundary conditions motivated by the multipole expansion of Bella, Giunti and Otto, still performs well in correlated media. With overwhelming probability, we obtain a convergence rate in terms of $l$, $L$ and the size of the correlations for which optimality is supported with numerical simulations. These estimates are provided for ensembles which satisfy a multi-scale logarithmic Sobolev inequality, where our main tool is an extension of the semi-group estimates established by the first author. As part of our strategy, we construct sub-linear second-order correctors in this correlated setting which is of independent interest.

We study scalable machine learning models for full event reconstruction in high-energy electron-positron collisions based on a highly granular detector simulation. Particle-flow (PF) reconstruction can be formulated as a supervised learning task using tracks and calorimeter clusters or hits. We compare a graph neural network and kernel-based transformer and demonstrate that both avoid quadratic memory allocation and computational cost while achieving realistic PF reconstruction. We show that hyperparameter tuning on a supercomputer significantly improves the physics performance of the models. We also demonstrate that the resulting model is highly portable across hardware processors, supporting Nvidia, AMD, and Intel Habana cards. Finally, we demonstrate that the model can be trained on highly granular inputs consisting of tracks and calorimeter hits, resulting in a competitive physics performance with the baseline. Datasets and software to reproduce the studies are published following the findable, accessible, interoperable, and reusable (FAIR) principles.

We analyse a numerical scheme for a system arising from a novel description of the standard elastic--perfectly plastic response. The elastic--perfectly plastic response is described via rate-type equations that do not make use of the standard elastic-plastic decomposition, and the model does not require the use of variational inequalities. Furthermore, the model naturally includes the evolution equation for temperature. We present a low order discretisation based on the finite element method. Under certain restrictions on the mesh we subsequently prove the existence of discrete solutions, and we discuss the stability properties of the numerical scheme. The analysis is supplemented with computational examples.

This paper presents a novel approach to construct regularizing operators for severely ill-posed Fredholm integral equations of the first kind by introducing parametrized discretization. The optimal values of discretization and regularization parameters are computed simultaneously by solving a minimization problem formulated based on a regularization parameter search criterion. The effectiveness of the proposed approach is demonstrated through examples of noisy Laplace transform inversions and the deconvolution of nuclear magnetic resonance relaxation data.

Reinforcement learning of real-world tasks is very data inefficient, and extensive simulation-based modelling has become the dominant approach for training systems. However, in human-robot interaction and many other real-world settings, there is no appropriate one-model-for-all due to differences in individual instances of the system (e.g. different people) or necessary oversimplifications in the simulation models. This requires two approaches: 1. either learning the individual system's dynamics approximately from data which requires data-intensive training or 2. using a complete digital twin of the instances, which may not be realisable in many cases. We introduce two approaches: co-kriging adjustments (CKA) and ridge regression adjustment (RRA) as novel ways to combine the advantages of both approaches. Our adjustment methods are based on an auto-regressive AR1 co-kriging model that we integrate with GP priors. This yield a data- and simulation-efficient way of using simplistic simulation models (e.g., simple two-link model) and rapidly adapting them to individual instances (e.g., biomechanics of individual people). Using CKA and RRA, we obtain more accurate uncertainty quantification of the entire system's dynamics than pure GP-based and AR1 methods. We demonstrate the efficiency of co-kriging adjustment with an interpretable reinforcement learning control example, learning to control a biomechanical human arm using only a two-link arm simulation model (offline part) and CKA derived from a small amount of interaction data (on-the-fly online). Our method unlocks an efficient and uncertainty-aware way to implement reinforcement learning methods in real world complex systems for which only imperfect simulation models exist.

Developing an efficient computational scheme for high-dimensional Bayesian variable selection in generalised linear models and survival models has always been a challenging problem due to the absence of closed-form solutions for the marginal likelihood. The RJMCMC approach can be employed to samples model and coefficients jointly, but effective design of the transdimensional jumps of RJMCMC can be challenge, making it hard to implement. Alternatively, the marginal likelihood can be derived using data-augmentation scheme e.g. Polya-gamma data argumentation for logistic regression) or through other estimation methods. However, suitable data-augmentation schemes are not available for every generalised linear and survival models, and using estimations such as Laplace approximation or correlated pseudo-marginal to derive marginal likelihood within a locally informed proposal can be computationally expensive in the "large n, large p" settings. In this paper, three main contributions are presented. Firstly, we present an extended Point-wise implementation of Adaptive Random Neighbourhood Informed proposal (PARNI) to efficiently sample models directly from the marginal posterior distribution in both generalised linear models and survival models. Secondly, in the light of the approximate Laplace approximation, we also describe an efficient and accurate estimation method for the marginal likelihood which involves adaptive parameters. Additionally, we describe a new method to adapt the algorithmic tuning parameters of the PARNI proposal by replacing the Rao-Blackwellised estimates with the combination of a warm-start estimate and an ergodic average. We present numerous numerical results from simulated data and 8 high-dimensional gene fine mapping data-sets to showcase the efficiency of the novel PARNI proposal compared to the baseline add-delete-swap proposal.

We give a short survey of recent results on sparse-grid linear algorithms of approximate recovery and integration of functions possessing a unweighted or weighted Sobolev mixed smoothness based on their sampled values at a certain finite set. Some of them are extended to more general cases.

Quadratization of polynomial and nonpolynomial systems of ordinary differential equations is advantageous in a variety of disciplines, such as systems theory, fluid mechanics, chemical reaction modeling and mathematical analysis. A quadratization reveals new variables and structures of a model, which may be easier to analyze, simulate, control, and provides a convenient parametrization for learning. This paper presents novel theory, algorithms and software capabilities for quadratization of non-autonomous ODEs. We provide existence results, depending on the regularity of the input function, for cases when a quadratic-bilinear system can be obtained through quadratization. We further develop existence results and an algorithm that generalizes the process of quadratization for systems with arbitrary dimension that retain the nonlinear structure when the dimension grows. For such systems, we provide dimension-agnostic quadratization. An example is semi-discretized PDEs, where the nonlinear terms remain symbolically identical when the discretization size increases. As an important aspect for practical adoption of this research, we extended the capabilities of the QBee software towards both non-autonomous systems of ODEs and ODEs with arbitrary dimension. We present several examples of ODEs that were previously reported in the literature, and where our new algorithms find quadratized ODE systems with lower dimension than the previously reported lifting transformations. We further highlight an important area of quadratization: reduced-order model learning. This area can benefit significantly from working in the optimal lifting variables, where quadratic models provide a direct parametrization of the model that also avoids additional hyperreduction for the nonlinear terms. A solar wind example highlights these advantages.

Besov priors are nonparametric priors that can model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of their asymptotic frequentist convergence properties. In the present paper, we consider the theoretical recovery performance of the posterior distributions associated to Besov-Laplace priors in the density estimation model, under the assumption that the observations are generated by a possibly spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov-Laplace priors attain optimal posterior contraction rates. Furthermore, we show that hierarchical procedures involving a hyper-prior on the regularity parameter lead to adaptation to any smoothness level.

The semi-empirical nature of best-estimate models closing the balance equations of thermal-hydraulic (TH) system codes is well-known as a significant source of uncertainty for accuracy of output predictions. This uncertainty, called model uncertainty, is usually represented by multiplicative (log-)Gaussian variables whose estimation requires solving an inverse problem based on a set of adequately chosen real experiments. One method from the TH field, called CIRCE, addresses it. We present in the paper a generalization of this method to several groups of experiments each having their own properties, including different ranges for input conditions and different geometries. An individual (log-)Gaussian distribution is therefore estimated for each group in order to investigate whether the model uncertainty is homogeneous between the groups, or should depend on the group. To this end, a multi-group CIRCE is proposed where a variance parameter is estimated for each group jointly to a mean parameter common to all the groups to preserve the uniqueness of the best-estimate model. The ECME algorithm for Maximum Likelihood Estimation is adapted to the latter context, then applied to relevant demonstration cases. Finally, it is tested on a practical case to assess the uncertainty of critical mass flow assuming two groups due to the difference of geometry between the experimental setups.

北京阿比特科技有限公司