PAC-Bayesian bounds are known to be tight and informative when studying the generalization ability of randomized classifiers. However, they require a loose and costly derandomization step when applied to some families of deterministic models such as neural networks. As an alternative to this step, we introduce new PAC-Bayesian generalization bounds that have the originality to provide disintegrated bounds, i.e., they give guarantees over one single hypothesis instead of the usual averaged analysis. Our bounds are easily optimizable and can be used to design learning algorithms. We illustrate this behavior on neural networks, and we show a significant practical improvement over the state-of-the-art framework.
We consider unconstrained minimization of smooth convex functions. We propose a novel variational perspective using forced Euler-Lagrange equation that allows for studying high-resolution ODEs. Through this, we obtain a faster convergence rate for gradient norm minimization using Nesterov's accelerated gradient method. Additionally, we show that Nesterov's method can be interpreted as a rate-matching discretization of an appropriately chosen high-resolution ODE. Finally, using the results from the new variational perspective, we propose a stochastic method for noisy gradients. Several numerical experiments compare and illustrate our stochastic algorithm with state of the art methods.
Large Language Models (LLMs) make natural interfaces to factual knowledge, but their usefulness is limited by their tendency to deliver inconsistent answers to semantically equivalent questions. For example, a model might predict both "Anne Redpath passed away in Edinburgh." and "Anne Redpath's life ended in London." In this work, we identify potential causes of inconsistency and evaluate the effectiveness of two mitigation strategies: up-scaling and augmenting the LM with a retrieval corpus. Our results on the LLaMA and Atlas models show that both strategies reduce inconsistency while retrieval augmentation is considerably more efficient. We further consider and disentangle the consistency contributions of different components of Atlas. For all LMs evaluated we find that syntactical form and other evaluation task artifacts impact consistency. Taken together, our results provide a better understanding of the factors affecting the factual consistency of language models.
High-fidelity simulators that connect theoretical models with observations are indispensable tools in many sciences. When coupled with machine learning, a simulator makes it possible to infer the parameters of a theoretical model directly from real and simulated observations without explicit use of the likelihood function. This is of particular interest when the latter is intractable. In this work, we introduce a simple extension of the recently proposed likelihood-free frequentist inference (LF2I) approach that has some computational advantages. Like LF2I, this extension yields provably valid confidence sets in parameter inference problems in which a high-fidelity simulator is available. The utility of our algorithm is illustrated by applying it to three pedagogically interesting examples: the first is from cosmology, the second from high-energy physics and astronomy, both with tractable likelihoods, while the third, with an intractable likelihood, is from epidemiology.
Continuous monitoring and patient acuity assessments are key aspects of Intensive Care Unit (ICU) practice, but both are limited by time constraints imposed on healthcare providers. Moreover, anticipating clinical trajectories remains imprecise. The objectives of this study are to (1) develop an electronic phenotype of acuity using automated variable retrieval within the electronic health records and (2) describe transitions between acuity states that illustrate the clinical trajectories of ICU patients. We gathered two single-center, longitudinal electronic health record datasets for 51,372 adult ICU patients admitted to the University of Florida Health (UFH) Gainesville (GNV) and Jacksonville (JAX). We developed algorithms to quantify acuity status at four-hour intervals for each ICU admission and identify acuity phenotypes using continuous acuity status and k-means clustering approach. 51,073 admissions for 38,749 patients in the UFH GNV dataset and 22,219 admissions for 12,623 patients in the UFH JAX dataset had at least one ICU stay lasting more than four hours. There were three phenotypes: persistently stable, persistently unstable, and transitioning from unstable to stable. For stable patients, approximately 0.7%-1.7% would transition to unstable, 0.02%-0.1% would expire, 1.2%-3.4% would be discharged, and the remaining 96%-97% would remain stable in the ICU every four hours. For unstable patients, approximately 6%-10% would transition to stable, 0.4%-0.5% would expire, and the remaining 89%-93% would remain unstable in the ICU in the next four hours. We developed phenotyping algorithms for patient acuity status every four hours while admitted to the ICU. This approach may be useful in developing prognostic and clinical decision-support tools to aid patients, caregivers, and providers in shared decision-making processes regarding escalation of care and patient values.
Although large language models (LLMs) are impressive in solving various tasks, they can quickly be outdated after deployment. Maintaining their up-to-date status is a pressing concern in the current era. This paper provides a comprehensive review of recent advances in aligning LLMs with the ever-changing world knowledge without re-training from scratch. We categorize research works systemically and provide in-depth comparisons and discussion. We also discuss existing challenges and highlight future directions to facilitate research in this field. We release the paper list at //github.com/hyintell/awesome-refreshing-llms
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.