We study recovery of amplitudes and nodes of a finite impulse train from a limited number of equispaced noisy frequency samples. This problem is known as super-resolution (SR) under sparsity constraints and has numerous applications, including direction of arrival and finite rate of innovation sampling. Prony's method is an algebraic technique which fully recovers the signal parameters in the absence of measurement noise. In the presence of noise, Prony's method may experience significant loss of accuracy, especially when the separation between Dirac pulses is smaller than the Nyquist-Shannon-Rayleigh (NSR) limit. In this work we combine Prony's method with a recently established decimation technique for analyzing the SR problem in the regime where the distance between two or more pulses is much smaller than the NSR limit. We show that our approach attains optimal asymptotic stability in the presence of noise. Our result challenges the conventional belief that Prony-type methods tend to be highly numerically unstable.
Power analyses are an important aspect of experimental design, because they help determine how experiments are implemented in practice. It is common to specify a desired level of power and compute the sample size necessary to obtain that power. Such calculations are well-known for completely randomized experiments, but there can be many benefits to using other experimental designs. For example, it has recently been established that rerandomization, where subjects are randomized until covariate balance is obtained, increases the precision of causal effect estimators. This work establishes the power of rerandomized treatment-control experiments, thereby allowing for sample size calculators. We find the surprising result that, while power is often greater under rerandomization than complete randomization, the opposite can occur for very small treatment effects. The reason is that inference under rerandomization can be relatively more conservative, in the sense that it can have a lower type-I error at the same nominal significance level, and this additional conservativeness adversely affects power. This surprising result is due to treatment effect heterogeneity, a quantity often ignored in power analyses. We find that heterogeneity increases power for large effect sizes but decreases power for small effect sizes.
End-to-end generative methods are considered a more promising solution for image restoration in physics-based vision compared with the traditional deconstructive methods based on handcrafted composition models. However, existing generative methods still have plenty of room for improvement in quantitative performance. More crucially, these methods are considered black boxes due to weak interpretability and there is rarely a theory trying to explain their mechanism and learning process. In this study, we try to re-interpret these generative methods for image restoration tasks using information theory. Different from conventional understanding, we analyzed the information flow of these methods and identified three sources of information (extracted high-level information, retained low-level information, and external information that is absent from the source inputs) are involved and optimized respectively in generating the restoration results. We further derived their learning behaviors, optimization objectives, and the corresponding information boundaries by extending the information bottleneck principle. Based on this theoretic framework, we found that many existing generative methods tend to be direct applications of the general models designed for conventional generation tasks, which may suffer from problems including over-invested abstraction processes, inherent details loss, and vanishing gradients or imbalance in training. We analyzed these issues with both intuitive and theoretical explanations and proved them with empirical evidence respectively. Ultimately, we proposed general solutions or ideas to address the above issue and validated these approaches with performance boosts on six datasets of three different image restoration tasks.
We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained and the position at a given (constant) time of an exponentially tempered L\'evy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order $\varepsilon^{-2}$ if the mean squared error is at most $\varepsilon^2$) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb guidelines for users to the best method for a given set of parameters. We illustrate the performance of the algorithm with numerical examples.
Various types of Multi-Agent Reinforcement Learning (MARL) methods have been developed, assuming that agents' policies are based on true states. Recent works have improved the robustness of MARL under uncertainties from the reward, transition probability, or other partners' policies. However, in real-world multi-agent systems, state estimations may be perturbed by sensor measurement noise or even adversaries. Agents' policies trained with only true state information will deviate from optimal solutions when facing adversarial state perturbations during execution. MARL under adversarial state perturbations has limited study. Hence, in this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to study the fundamental properties of MARL under state uncertainties. We prove that the optimal agent policy and the robust Nash equilibrium do not always exist for an SAMG. Instead, we define the solution concept, robust agent policy, of the proposed SAMG under adversarial state perturbations, where agents want to maximize the worst-case expected state value. We then design a gradient descent ascent-based robust MARL algorithm to learn the robust policies for the MARL agents. Our experiments show that adversarial state perturbations decrease agents' rewards for several baselines from the existing literature, while our algorithm outperforms baselines with state perturbations and significantly improves the robustness of the MARL policies under state uncertainties.
When one observes a sequence of variables $(x_1, y_1), \ldots, (x_n, y_n)$, Conformal Prediction (CP) is a methodology that allows to estimate a confidence set for $y_{n+1}$ given $x_{n+1}$ by merely assuming that the distribution of the data is exchangeable. CP sets have guaranteed coverage for any finite population size $n$. While appealing, the computation of such a set turns out to be infeasible in general, e.g. when the unknown variable $y_{n+1}$ is continuous. The bottleneck is that it is based on a procedure that readjusts a prediction model on data where we replace the unknown target by all its possible values in order to select the most probable one. This requires computing an infinite number of models, which often makes it intractable. In this paper, we combine CP techniques with classical algorithmic stability bounds to derive a prediction set computable with a single model fit. We demonstrate that our proposed confidence set does not lose any coverage guarantees while avoiding the need for data splitting as currently done in the literature. We provide some numerical experiments to illustrate the tightness of our estimation when the sample size is sufficiently large, on both synthetic and real datasets.
This work aims at showing that it is feasible and safe to use a swarm of Unmanned Aerial Vehicles (UAVs) indoors alongside humans. UAVs are increasingly being integrated under the Industry 4.0 framework. UAV swarms are primarily deployed outdoors in civil and military applications, but the opportunities for using them in manufacturing and supply chain management are immense. There is extensive research on UAV technology, e.g., localization, control, and computer vision, but less research on the practical application of UAVs in industry. UAV technology could improve data collection and monitoring, enhance decision-making in an Internet of Things framework and automate time-consuming and redundant tasks in the industry. However, there is a gap between the technological developments of UAVs and their integration into the supply chain. Therefore, this work focuses on automating the task of transporting packages utilizing a swarm of small UAVs operating alongside humans. MoCap system, ROS, and unity are used for localization, inter-process communication and visualization. Multiple experiments are performed with the UAVs in wander and swarm mode in a warehouse like environment.
Artificial intelligence is creating one of the biggest revolution across technology driven application fields. For the finance sector, it offers many opportunities for significant market innovation and yet broad adoption of AI systems heavily relies on our trust in their outputs. Trust in technology is enabled by understanding the rationale behind the predictions made. To this end, the concept of eXplainable AI emerged introducing a suite of techniques attempting to explain to users how complex models arrived at a certain decision. For cross-sectional data classical XAI approaches can lead to valuable insights about the models' inner workings, but these techniques generally cannot cope well with longitudinal data (time series) in the presence of dependence structure and non-stationarity. We here propose a novel XAI technique for deep learning methods which preserves and exploits the natural time ordering of the data.
Constructing asymptotically valid confidence intervals through a valid central limit theorem is crucial for A/B tests, where a classical goal is to statistically assert whether a treatment plan is significantly better than a control plan. In some emerging applications for online platforms, the treatment plan is not a single plan, but instead encompasses an infinite continuum of plans indexed by a continuous treatment parameter. As such, the experimenter not only needs to provide valid statistical inference, but also desires to effectively and adaptively find the optimal choice of value for the treatment parameter to use for the treatment plan. However, we find that classical optimization algorithms, despite of their fast convergence rates under convexity assumptions, do not come with a central limit theorem that can be used to construct asymptotically valid confidence intervals. We fix this issue by providing a new optimization algorithm that on one hand maintains the same fast convergence rate and on the other hand permits the establishment of a valid central limit theorem. We discuss practical implementations of the proposed algorithm and conduct numerical experiments to illustrate the theoretical findings.
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.
The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.