亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce and investigate, for finite groups $G$, $G$-invariant deep neural network ($G$-DNN) architectures with ReLU activation that are densely connected-- i.e., include all possible skip connections. In contrast to other $G$-invariant architectures in the literature, the preactivations of the$G$-DNNs presented here are able to transform by \emph{signed} permutation representations (signed perm-reps) of $G$. Moreover, the individual layers of the $G$-DNNs are not required to be $G$-equivariant; instead, the preactivations are constrained to be $G$-equivariant functions of the network input in a way that couples weights across all layers. The result is a richer family of $G$-invariant architectures never seen previously. We derive an efficient implementation of $G$-DNNs after a reparameterization of weights, as well as necessary and sufficient conditions for an architecture to be ``admissible''-- i.e., nondegenerate and inequivalent to smaller architectures. We include code that allows a user to build a $G$-DNN interactively layer-by-layer, with the final architecture guaranteed to be admissible. We show that there are far more admissible $G$-DNN architectures than those accessible with the ``concatenated ReLU'' activation function from the literature. Finally, we apply $G$-DNNs to two example problems -- (1) multiplication in $\{-1, 1\}$ (with theoretical guarantees) and (2) 3D object classification -- % finding that the inclusion of signed perm-reps significantly boosts predictive performance compared to baselines with only ordinary (i.e., unsigned) perm-reps.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

We present a novel, power- & hardware-efficient, multiuser, multibeam RIS (Reflective Intelligent Surface) architecture for multiuser MIMO, especially for very high frequency bands (e.g., high mmWave and sub-THz), where channels are typically sparse in the beamspace and LOS is the dominant component. The key module is formed by an active multiantenna feeder (AMAF) with a small number of active antennas, placed in the near field of a RIS with a much larger number of passive controllable reflecting elements. We propose a pragmatic approach to obtain a steerable beam with high gain and very low sidelobes. Then K independently controlled beams can be achieved by closely stacking K such AMAF-RIS modules. Our analysis includes the mutual interference between the modules and the fact that, due to the delay difference of propagation through the AMAF-RIS structure, the resulting channel matrix is frequency selective even for pure LOS propagation. We consider a 3D geometry and show that "beam focusing" is in fact possible (and much more effective in terms of coverage) also in the far-field, by creating spotbeams with limited footprint both in angle and in range. Our results show that: 1) simple RF beamforming (BF) without computationally expensive baseband multiuser precoding is sufficient to practically eliminate multiuser interference when the users are chosen with sufficient angular/range separation, thanks to the extremely low sidelobe beams; 2) the impact of beam pointing errors with standard deviation as large as 2.5 deg and RIS quantized phase-shifters with quantization bits > 2 is essentially negligible; 3) The proposed architecture is more power efficient & much simpler from a hardware implementation viewpoint than standard active arrays with the same BF performance. We show also that the array gain of the proposed AMAF-RIS structure is linear with the RIS aperture.

The Open Radio Access Network (O-RAN) architecture empowers intelligent and automated optimization of the RAN through applications deployed on the RAN Intelligent Controller (RIC) platform, enabling capabilities beyond what is achievable with traditional RAN solutions. Within this paradigm, Traffic Steering (TS) emerges as a pivotal RIC application that focuses on optimizing cell-level mobility settings in near-real-time, aiming to significantly improve network spectral efficiency. In this paper, we design a novel TS algorithm based on a Cascade Reinforcement Learning (CaRL) framework. We propose state space factorization and policy decomposition to reduce the need for large models and well-labeled datasets. For each sub-state space, an RL sub-policy will be trained to learn an optimized mapping onto the action space. To apply CaRL on new network regions, we propose a knowledge transfer approach to initialize a new sub-policy based on knowledge learned by the trained policies. To evaluate CaRL, we build a data-driven and scalable RIC digital twin (DT) that is modeled using important real-world data, including network configuration, user geo-distribution, and traffic demand, among others, from a tier-1 mobile operator in the US. We evaluate CaRL on two DT scenarios representing two network clusters in two different cities and compare its performance with the business-as-usual (BAU) policy and other competing optimization approaches using heuristic and Q-table algorithms. Benchmarking results show that CaRL performs the best and improves the average cluster-aggregated downlink throughput over the BAU policy by 24% and 18% in these two scenarios, respectively.

This work introduces BRILLsson, a novel binary neural network-based representation learning model for a broad range of non-semantic speech tasks. We train the model with knowledge distillation from a large and real-valued TRILLsson model with only a fraction of the dataset used to train TRILLsson. The resulting BRILLsson models are only 2MB in size with a latency less than 8ms, making them suitable for deployment in low-resource devices such as wearables. We evaluate BRILLsson on eight benchmark tasks (including but not limited to spoken language identification, emotion recognition, health condition diagnosis, and keyword spotting), and demonstrate that our proposed ultra-light and low-latency models perform as well as large-scale models.

Motivated by the advances in deep learning techniques, the application of Unmanned Aerial Vehicle (UAV)-based object detection has proliferated across a range of fields, including vehicle counting, fire detection, and city monitoring. While most existing research studies only a subset of the challenges inherent to UAV-based object detection, there are few studies that balance various aspects to design a practical system for energy consumption reduction. In response, we present the E$^3$-UAV, an edge-based energy-efficient object detection system for UAVs. The system is designed to dynamically support various UAV devices, edge devices, and detection algorithms, with the aim of minimizing energy consumption by deciding the most energy-efficient flight parameters (including flight altitude, flight speed, detection algorithm, and sampling rate) required to fulfill the detection requirements of the task. We first present an effective evaluation metric for actual tasks and construct a transparent energy consumption model based on hundreds of actual flight data to formalize the relationship between energy consumption and flight parameters. Then we present a lightweight energy-efficient priority decision algorithm based on a large quantity of actual flight data to assist the system in deciding flight parameters. Finally, we evaluate the performance of the system, and our experimental results demonstrate that it can significantly decrease energy consumption in real-world scenarios. Additionally, we provide four insights that can assist researchers and engineers in their efforts to study UAV-based object detection further.

Federated learning (FL) allows multiple clients to collaboratively learn a globally shared model through cycles of model aggregation and local model training, without the need to share data. Most existing FL methods train local models separately on different clients, and then simply average their parameters to obtain a centralized model on the server side. However, these approaches generally suffer from large aggregation errors and severe local forgetting, which are particularly bad in heterogeneous data settings. To tackle these issues, in this paper, we propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side. On the server side, a multivariate Gaussian product mechanism is employed to construct and maximize a global posterior, largely reducing the aggregation errors induced by large discrepancies between local models. On the client side, a prior loss that uses the global posterior probabilistic parameters delivered from the server is designed to guide the local training. Binding such learning constraints from other clients enables our method to mitigate local forgetting. Finally, we achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.

By reusing data throughout training, off-policy deep reinforcement learning algorithms offer improved sample efficiency relative to on-policy approaches. For continuous action spaces, the most popular methods for off-policy learning include policy improvement steps where a learned state-action ($Q$) value function is maximized over selected batches of data. These updates are often paired with regularization to combat associated overestimation of $Q$ values. With an eye toward safety, we revisit this strategy in environments with "mixed-sign" reward functions; that is, with reward functions that include independent positive (incentive) and negative (cost) terms. This setting is common in real-world applications, and may be addressed with or without constraints on the cost terms. We find the combination of function approximation and a term that maximizes $Q$ in the policy update to be problematic in such environments, because systematic errors in value estimation impact the contributions from the competing terms asymmetrically. This results in overemphasis of either incentives or costs and may severely limit learning. We explore two remedies to this issue. First, consistent with prior work, we find that periodic resetting of $Q$ and policy networks can be used to reduce value estimation error and improve learning in this setting. Second, we formulate novel off-policy actor-critic methods for both unconstrained and constrained learning that do not explicitly maximize $Q$ in the policy update. We find that this second approach, when applied to continuous action spaces with mixed-sign rewards, consistently and significantly outperforms state-of-the-art methods augmented by resetting. We further find that our approach produces agents that are both competitive with popular methods overall and more reliably competent on frequently-studied control problems that do not have mixed-sign rewards.

One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network's prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features' information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.

Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司