We establish matching upper and lower generalization error bounds for mini-batch Gradient Descent (GD) training with either deterministic or stochastic, data-independent, but otherwise arbitrary batch selection rules. We consider smooth Lipschitz-convex/nonconvex/strongly-convex loss functions, and show that classical upper bounds for Stochastic GD (SGD) also hold verbatim for such arbitrary nonadaptive batch schedules, including all deterministic ones. Further, for convex and strongly-convex losses we prove matching lower bounds directly on the generalization error uniform over the aforementioned class of batch schedules, showing that all such batch schedules generalize optimally. Lastly, for smooth (non-Lipschitz) nonconvex losses, we show that full-batch (deterministic) GD is essentially optimal, among all possible batch schedules within the considered class, including all stochastic ones.
In this study, we examine numerical approximations for 2nd-order linear-nonlinear differential equations with diverse boundary conditions, followed by the residual corrections of the first approximations. We first obtain numerical results using the Galerkin weighted residual approach with Bernstein polynomials. The generation of residuals is brought on by the fact that our first approximation is computed using numerical methods. To minimize these residuals, we use the compact finite difference scheme of 4th-order convergence to solve the error differential equations in accordance with the error boundary conditions. We also introduce the formulation of the compact finite difference method of fourth-order convergence for the nonlinear BVPs. The improved approximations are produced by adding the error values derived from the approximations of the error differential equation to the weighted residual values. Numerical results are compared to the exact solutions and to the solutions available in the published literature to validate the proposed scheme, and high accuracy is achieved in all cases
Sharpness-Aware Minimization (SAM) is an optimizer that takes a descent step based on the gradient at a perturbation $y_t = x_t + \rho \frac{\nabla f(x_t)}{\lVert \nabla f(x_t) \rVert}$ of the current point $x_t$. Existing studies prove convergence of SAM for smooth functions, but they do so by assuming decaying perturbation size $\rho$ and/or no gradient normalization in $y_t$, which is detached from practice. To address this gap, we study deterministic/stochastic versions of SAM with practical configurations (i.e., constant $\rho$ and gradient normalization in $y_t$) and explore their convergence properties on smooth functions with (non)convexity assumptions. Perhaps surprisingly, in many scenarios, we find out that SAM has limited capability to converge to global minima or stationary points. For smooth strongly convex functions, we show that while deterministic SAM enjoys tight global convergence rates of $\tilde \Theta(\frac{1}{T^2})$, the convergence bound of stochastic SAM suffers an inevitable additive term $O(\rho^2)$, indicating convergence only up to neighborhoods of optima. In fact, such $O(\rho^2)$ factors arise for stochastic SAM in all the settings we consider, and also for deterministic SAM in nonconvex cases; importantly, we prove by examples that such terms are unavoidable. Our results highlight vastly different characteristics of SAM with vs. without decaying perturbation size or gradient normalization, and suggest that the intuitions gained from one version may not apply to the other.
Reliable probabilistic primality tests are fundamental in public-key cryptography. In adversarial scenarios, a composite with a high probability of passing a specific primality test could be chosen. In such cases, we need worst-case error estimates for the test. However, in many scenarios the numbers are randomly chosen and thus have significantly smaller error probability. Therefore, we are interested in average case error estimates. In this paper, we establish such bounds for the strong Lucas primality test, as only worst-case, but no average case error bounds, are currently available. This allows us to use this test with more confidence. We examine an algorithm that draws odd $k$-bit integers uniformly and independently, runs $t$ independent iterations of the strong Lucas test with randomly chosen parameters, and outputs the first number that passes all $t$ consecutive rounds. We attain numerical upper bounds on the probability on returing a composite. Furthermore, we consider a modified version of this algorithm that excludes integers divisible by small primes, resulting in improved bounds. Additionally, we classify the numbers that contribute most to our estimate.
The problem of generalization and transportation of treatment effect estimates from a study sample to a target population is central to empirical research and statistical methodology. In both randomized experiments and observational studies, weighting methods are often used with this objective. Traditional methods construct the weights by separately modeling the treatment assignment and study selection probabilities and then multiplying functions (e.g., inverses) of their estimates. In this work, we provide a justification and an implementation for weighting in a single step. We show a formal connection between this one-step method and inverse probability and inverse odds weighting. We demonstrate that the resulting estimator for the target average treatment effect is consistent, asymptotically Normal, multiply robust, and semiparametrically efficient. We evaluate the performance of the one-step estimator in a simulation study. We illustrate its use in a case study on the effects of physician racial diversity on preventive healthcare utilization among Black men in California. We provide R code implementing the methodology.
We consider the problem of estimating a scalar target parameter in the presence of nuisance parameters. Replacing the unknown nuisance parameter with a nonparametric estimator, e.g.,a machine learning (ML) model, is convenient but has shown to be inefficient due to large biases. Modern methods, such as the targeted minimum loss-based estimation (TMLE) and double machine learning (DML), achieve optimal performance under flexible assumptions by harnessing ML estimates while mitigating the plug-in bias. To avoid a sub-optimal bias-variance trade-off, these methods perform a debiasing step of the plug-in pre-estimate. Existing debiasing methods require the influence function of the target parameter as input. However, deriving the IF requires specialized expertise and thus obstructs the adaptation of these methods by practitioners. We propose a novel way to debias plug-in estimators which (i) is efficient, (ii) does not require the IF to be implemented, (iii) is computationally tractable, and therefore can be readily adapted to new estimation problems and automated without analytic derivations by the user. We build on the TMLE framework and update a plug-in estimate with a regularized likelihood maximization step over a nonparametric model constructed with a reproducing kernel Hilbert space (RKHS), producing an efficient plug-in estimate for any regular target parameter. Our method, thus, offers the efficiency of competing debiasing techniques without sacrificing the utility of the plug-in approach.
We consider finding flat, local minimizers by adding average weight perturbations. Given a nonconvex function $f: \mathbb{R}^d \rightarrow \mathbb{R}$ and a $d$-dimensional distribution $\mathcal{P}$ which is symmetric at zero, we perturb the weight of $f$ and define $F(W) = \mathbb{E}[f({W + U})]$, where $U$ is a random sample from $\mathcal{P}$. This injection induces regularization through the Hessian trace of $f$ for small, isotropic Gaussian perturbations. Thus, the weight-perturbed function biases to minimizers with low Hessian trace. Several prior works have studied settings related to this weight-perturbed function by designing algorithms to improve generalization. Still, convergence rates are not known for finding minima under the average perturbations of the function $F$. This paper considers an SGD-like algorithm that injects random noise before computing gradients while leveraging the symmetry of $\mathcal{P}$ to reduce variance. We then provide a rigorous analysis, showing matching upper and lower bounds of our algorithm for finding an approximate first-order stationary point of $F$ when the gradient of $f$ is Lipschitz-continuous. We empirically validate our algorithm for several image classification tasks with various architectures. Compared to sharpness-aware minimization, we note a 12.6% and 7.8% drop in the Hessian trace and top eigenvalue of the found minima, respectively, averaged over eight datasets. Ablation studies validate the benefit of the design of our algorithm.
Approximating functions of a large number of variables poses particular challenges often subsumed under the term ``Curse of Dimensionality'' (CoD). Unless the approximated function exhibits a very high level of smoothness the CoD can be avoided only by exploiting some typically hidden {\em structural sparsity}. In this paper we propose a general framework for new model classes of functions in high dimensions. They are based on suitable notions of {\em compositional dimension-sparsity} quantifying, on a continuous level, approximability by compositions with certain structural properties. In particular, this describes scenarios where deep neural networks can avoid the CoD. The relevance of these concepts is demonstrated for {\em solution manifolds} of parametric transport equations. For such PDEs parameter-to-solution maps do not enjoy the type of high order regularity that helps to avoid the CoD by more conventional methods in other model scenarios. Compositional sparsity is shown to serve as the key mechanism forn proving that sparsity of problem data is inherited in a quantifiable way by the solution manifold. In particular, one obtains convergence rates for deep neural network realizations showing that the CoD is indeed avoided.
Despite the non-convex optimization landscape, over-parametrized shallow networks are able to achieve global convergence under gradient descent. The picture can be radically different for narrow networks, which tend to get stuck in badly-generalizing local minima. Here we investigate the cross-over between these two regimes in the high-dimensional setting, and in particular investigate the connection between the so-called mean-field/hydrodynamic regime and the seminal approach of Saad & Solla. Focusing on the case of Gaussian data, we study the interplay between the learning rate, the time scale, and the number of hidden units in the high-dimensional dynamics of stochastic gradient descent (SGD). Our work builds on a deterministic description of SGD in high-dimensions from statistical physics, which we extend and for which we provide rigorous convergence rates.
The classical approach to analyzing extreme value data is the generalized Pareto distribution (GPD). When the GPD is used to explain a target variable with the large dimension of covariates, the shape and scale function of covariates included in GPD are sometimes modeled using the generalized additive models (GAM). In contrast to many results of application, there are no theoretical results on the hybrid technique of GAM and GPD, which motivates us to develop its asymptotic theory. We provide the rate of convergence of the estimator of shape and scale functions, as well as its local asymptotic normality.
Graph Neural Networks (GNNs) for representation learning of graphs broadly follow a neighborhood aggregation framework, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs in capturing different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.