亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the non-convex optimization landscape, over-parametrized shallow networks are able to achieve global convergence under gradient descent. The picture can be radically different for narrow networks, which tend to get stuck in badly-generalizing local minima. Here we investigate the cross-over between these two regimes in the high-dimensional setting, and in particular investigate the connection between the so-called mean-field/hydrodynamic regime and the seminal approach of Saad & Solla. Focusing on the case of Gaussian data, we study the interplay between the learning rate, the time scale, and the number of hidden units in the high-dimensional dynamics of stochastic gradient descent (SGD). Our work builds on a deterministic description of SGD in high-dimensions from statistical physics, which we extend and for which we provide rigorous convergence rates.

相關內容

隨機梯度下降,按照數據生成分布抽取m個樣本,通過計算他們梯度的平均值來更新梯度。

Forecasting of renewable energy generation provides key insights which may help with decision-making towards global decarbonisation. Renewable energy generation can often be represented through cross-sectional hierarchies, whereby a single farm may have multiple individual generators. Hierarchical forecasting through reconciliation has demonstrated a significant increase in the quality of forecasts both theoretically and empirically. However, it is not evident whether forecasts generated by individual temporal and cross-sectional aggregation can be superior to integrated cross-temporal forecasts and to individual forecasts on more granular data. In this study, we investigate the accuracies of different cross-sectional and cross-temporal reconciliation methods using both linear regression and gradient boosting machine learning for forecasting wind farm power generation. We found that cross-temporal reconciliation is superior to individual cross-sectional reconciliation at multiple temporal aggregations. Cross-temporally reconciled machine learning base forecasts also demonstrated a high accuracy at coarser temporal granularities, which may encourage adoption for short-term wind forecasts. We also show that linear regression can outperform machine learning models across most levels in cross-sectional wind time series.

At least two, different approaches to define and solve statistical models for the analysis of economic systems exist: the typical, econometric one, interpreting the Gravity Model specification as the expected link weight of an arbitrary probability distribution, and the one rooted into statistical physics, constructing maximum-entropy distributions constrained to satisfy certain network properties. In a couple of recent, companion papers they have been successfully integrated within the framework induced by the constrained minimisation of the Kullback-Leibler divergence: specifically, two, broad classes of models have been devised, i.e. the integrated and the conditional ones, defined by different, probabilistic rules to place links, load them with weights and turn them into proper, econometric prescriptions. Still, the recipes adopted by the two approaches to estimate the parameters entering into the definition of each model differ. In econometrics, a likelihood that decouples the binary and weighted parts of a model, treating a network as deterministic, is typically maximised; to restore its random character, two alternatives exist: either solving the likelihood maximisation on each configuration of the ensemble and taking the average of the parameters afterwards or taking the average of the likelihood function and maximising the latter one. The difference between these approaches lies in the order in which the operations of averaging and maximisation are taken - a difference that is reminiscent of the quenched and annealed ways of averaging out the disorder in spin glasses. The results of the present contribution, devoted to comparing these recipes in the case of continuous, conditional network models, indicate that the annealed estimation recipe represents the best alternative to the deterministic one.

We propose and analyze a nonlinear dynamic model of continuous-time multi-dimensional belief formation over signed social networks. Our model accounts for the effects of a structured belief system, self-appraisal, internal biases, and various sources of cognitive dissonance posited by recent theories in social psychology. We prove that strong beliefs emerge on the network as a consequence of a bifurcation. We analyze how the balance of social network effects in the model controls the nature of the bifurcation and, therefore, the belief-forming limit-set solutions. Our analysis provides constructive conditions on how multi-stable network belief equilibria and belief oscillations emerging at a belief-forming bifurcation depend on the communication network graph and belief system network graph. Our model and analysis provide new theoretical insights on the dynamics of social systems and a new principled framework for designing decentralized decision-making on engineered networks in the presence of structured relationships among alternatives.

Despite their incredible performance, it is well reported that deep neural networks tend to be overoptimistic about their prediction confidence. Finding effective and efficient calibration methods for neural networks is therefore an important endeavour towards better uncertainty quantification in deep learning. In this manuscript, we introduce a novel calibration technique named expectation consistency (EC), consisting of a post-training rescaling of the last layer weights by enforcing that the average validation confidence coincides with the average proportion of correct labels. First, we show that the EC method achieves similar calibration performance to temperature scaling (TS) across different neural network architectures and data sets, all while requiring similar validation samples and computational resources. However, we argue that EC provides a principled method grounded on a Bayesian optimality principle known as the Nishimori identity. Next, we provide an asymptotic characterization of both TS and EC in a synthetic setting and show that their performance crucially depends on the target function. In particular, we discuss examples where EC significantly outperforms TS.

Neural network pruning is a highly effective technique aimed at reducing the computational and memory demands of large neural networks. In this research paper, we present a novel approach to pruning neural networks utilizing Bayesian inference, which can seamlessly integrate into the training procedure. Our proposed method leverages the posterior probabilities of the neural network prior to and following pruning, enabling the calculation of Bayes factors. The calculated Bayes factors guide the iterative pruning. Through comprehensive evaluations conducted on multiple benchmarks, we demonstrate that our method achieves desired levels of sparsity while maintaining competitive accuracy.

Kinetic approaches are generally accurate in dealing with microscale plasma physics problems but are computationally expensive for large-scale or multiscale systems. One of the long-standing problems in plasma physics is the integration of kinetic physics into fluid models, which is often achieved through sophisticated analytical closure terms. In this paper, we successfully construct a multi-moment fluid model with an implicit fluid closure included in the neural network using machine learning. The multi-moment fluid model is trained with a small fraction of sparsely sampled data from kinetic simulations of Landau damping, using the physics-informed neural network (PINN) and the gradient-enhanced physics-informed neural network (gPINN). The multi-moment fluid model constructed using either PINN or gPINN reproduces the time evolution of the electric field energy, including its damping rate, and the plasma dynamics from the kinetic simulations. In addition, we introduce a variant of the gPINN architecture, namely, gPINN$p$ to capture the Landau damping process. Instead of including the gradients of all the equation residuals, gPINN$p$ only adds the gradient of the pressure equation residual as one additional constraint. Among the three approaches, the gPINN$p$-constructed multi-moment fluid model offers the most accurate results. This work sheds light on the accurate and efficient modeling of large-scale systems, which can be extended to complex multiscale laboratory, space, and astrophysical plasma physics problems.

This paper introduces a first implementation of a novel likelihood-ratio-based approach for constructing confidence intervals for neural networks. Our method, called DeepLR, offers several qualitative advantages: most notably, the ability to construct asymmetric intervals that expand in regions with a limited amount of data, and the inherent incorporation of factors such as the amount of training time, network architecture, and regularization techniques. While acknowledging that the current implementation of the method is prohibitively expensive for many deep-learning applications, the high cost may already be justified in specific fields like medical predictions or astrophysics, where a reliable uncertainty estimate for a single prediction is essential. This work highlights the significant potential of a likelihood-ratio-based uncertainty estimate and establishes a promising avenue for future research.

Interest in the network analysis of bibliographic data has increased significantly in recent years. Yet, appropriate statistical models for examining the full dynamics of scientific citation networks, connecting authors to the papers they write and papers to other papers they cite, are not available. Very few studies exist that have examined how the social network between co-authors and the citation network among the papers shape one another and co-evolve. In consequence, our understanding of scientific citation networks remains incomplete. In this paper we extend recently derived relational hyperevent models (RHEM) to the analysis of scientific networks, providing a general framework to model the multiple dependencies involved in the relation linking multiple authors to the papers they write, and papers to the multiple references they cite. We demonstrate the empirical value of our model in an analysis of publicly available data on a scientific network comprising millions of authors and papers and assess the relative strength of various effects explaining scientific production. We outline the implications of the model for the evaluation of scientific research.

We consider the degree-Rips construction from topological data analysis, which provides a density-sensitive, multiparameter hierarchical clustering algorithm. We analyze its stability to perturbations of the input data using the correspondence-interleaving distance, a metric for hierarchical clusterings that we introduce. Taking certain one-parameter slices of degree-Rips recovers well-known methods for density-based clustering, but we show that these methods are unstable. However, we prove that degree-Rips, as a multiparameter object, is stable, and we propose an alternative approach for taking slices of degree-Rips, which yields a one-parameter hierarchical clustering algorithm with better stability properties. We prove that this algorithm is consistent, using the correspondence-interleaving distance. We provide an algorithm for extracting a single clustering from one-parameter hierarchical clusterings, which is stable with respect to the correspondence-interleaving distance. And, we integrate these methods into a pipeline for density-based clustering, which we call Persistable. Adapting tools from multiparameter persistent homology, we propose visualization tools that guide the selection of all parameters of the pipeline. We demonstrate Persistable on benchmark datasets, showing that it identifies multi-scale cluster structure in data.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司