亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Let $G=(V,E)$ be a simple undirected graph. The open neighbourhood of a vertex $v$ in $G$ is defined as $N_G(v)=\{u\in V~|~ uv\in E\}$; whereas the closed neighbourhood is defined as $N_G[v]= N_G(v)\cup \{v\}$. For an integer $k$, a subset $D\subseteq V$ is called a $k$-vertex-edge dominating set of $G$ if for every edge $uv\in E$, $|(N_G[u]\cup N_G[v]) \cap D|\geq k$. In $k$-vertex-edge domination problem, our goal is to find a $k$-vertex-edge dominating set of minimum cardinality of an input graph $G$. In this paper, we first prove that the decision version of $k$-vertex-edge domination problem is NP-complete for chordal graphs. On the positive side, we design a linear time algorithm for finding a minimum $k$-vertex-edge dominating set of tree. We also prove that there is a $O(\log(\Delta(G)))$-approximation algorithm for this problem in general graph $G$, where $\Delta(G)$ is the maximum degree of $G$. Then we show that for a graph $G$ with $n$ vertices, this problem cannot be approximated within a factor of $(1-\epsilon) \ln n$ for any $\epsilon >0$ unless $NP\subseteq DTIME(|V|^{O(\log\log|V|)})$. Finally, we prove that it is APX-complete for graphs with bounded degree $k+3$.

相關內容

We consider the gradient descent flow widely used for the minimization of the $\mathcal{L}^2$ cost function in Deep Learning networks, and introduce two modified versions; one adapted for the overparametrized setting, and the other for the underparametrized setting. Both have a clear and natural invariant geometric meaning, taking into account the pullback vector bundle structure in the overparametrized, and the pushforward vector bundle structure in the underparametrized setting. In the overparametrized case, we prove that, provided that a rank condition holds, all orbits of the modified gradient descent drive the $\mathcal{L}^2$ cost to its global minimum at a uniform exponential convergence rate. We point out relations of the latter to sub-Riemannian geometry.

Assuming the Exponential Time Hypothesis (ETH), a result of Marx (ToC'10) implies that there is no $f(k)\cdot n^{o(k/\log k)}$ time algorithm that can solve 2-CSPs with $k$ constraints (over a domain of arbitrary large size $n$) for any computable function $f$. This lower bound is widely used to show that certain parameterized problems cannot be solved in time $f(k)\cdot n^{o(k/\log k)}$ time (assuming the ETH). The purpose of this note is to give a streamlined proof of this result.

This paper develops a two-stage stochastic model to investigate evolution of random fields on the unit sphere $\bS^2$ in $\R^3$. The model is defined by a time-fractional stochastic diffusion equation on $\bS^2$ governed by a diffusion operator with the time-fractional derivative defined in the Riemann-Liouville sense. In the first stage, the model is characterized by a homogeneous problem with an isotropic Gaussian random field on $\bS^2$ as an initial condition. In the second stage, the model becomes an inhomogeneous problem driven by a time-delayed Brownian motion on $\bS^2$. The solution to the model is given in the form of an expansion in terms of complex spherical harmonics. An approximation to the solution is given by truncating the expansion of the solution at degree $L\geq1$. The rate of convergence of the truncation errors as a function of $L$ and the mean square errors as a function of time are also derived. It is shown that the convergence rates depend not only on the decay of the angular power spectrum of the driving noise and the initial condition, but also on the order of the fractional derivative. We study sample properties of the stochastic solution and show that the solution is an isotropic H\"{o}lder continuous random field. Numerical examples and simulations inspired by the cosmic microwave background (CMB) are given to illustrate the theoretical findings.

A one-dimensional sequence $u_0, u_1, u_2, \ldots \in [0, 1)$ is said to be completely uniformly distributed (CUD) if overlapping $s$-blocks $(u_i, u_{i+1}, \ldots , u_{i+s-1})$, $i = 0, 1, 2, \ldots$, are uniformly distributed for every dimension $s \geq 1$. This concept naturally arises in Markov chain quasi-Monte Carlo (QMC). However, the definition of CUD sequences is not constructive, and thus there remains the problem of how to implement the Markov chain QMC algorithm in practice. Harase (2021) focused on the $t$-value, which is a measure of uniformity widely used in the study of QMC, and implemented short-period Tausworthe generators (i.e., linear feedback shift register generators) over the two-element field $\mathbb{F}_2$ that approximate CUD sequences by running for the entire period. In this paper, we generalize a search algorithm over $\mathbb{F}_2$ to that over arbitrary finite fields $\mathbb{F}_b$ with $b$ elements and conduct a search for Tausworthe generators over $\mathbb{F}_b$ with $t$-values zero (i.e., optimal) for dimension $s = 3$ and small for $s \geq 4$, especially in the case where $b = 3, 4$, and $5$. We provide a parameter table of Tausworthe generators over $\mathbb{F}_4$, and report a comparison between our new generators over $\mathbb{F}_4$ and existing generators over $\mathbb{F}_2$ in numerical examples using Markov chain QMC.

We suggest the usage of algebraic subsets instead of subgroups in public-key cryptography. In particular, we present the subset version of two protocols introduced by Shpilrain and Ushakov with some examples in ascending HNN-extensions of free-abelian groups and discuss their resistance to length and distance based attacks. We also introduce several new group theoretic problems arising from this work.

We propose a threshold-type algorithm to the $L^2$-gradient flow of the Canham-Helfrich functional generalized to $\mathbb{R}^N$. The algorithm to the Willmore flow is derived as a special case in $\mathbb{R}^2$ or $\mathbb{R}^3$. This algorithm is constructed based on an asymptotic expansion of the solution to the initial value problem for a fourth order linear parabolic partial differential equation whose initial data is the indicator function on the compact set $\Omega_0$. The crucial points are to prove that the boundary $\partial\Omega_1$ of the new set $\Omega_1$ generated by our algorithm is included in $O(t)$-neighborhood from $\partial\Omega_0$ for small time $t>0$ and to show that the derivative of the threshold function in the normal direction for $\partial\Omega_0$ is far from zero in the small time interval. Finally, numerical examples of planar curves governed by the Willmore flow are provided by using our threshold-type algorithm.

We construct and analyze finite element approximations of the Einstein tensor in dimension $N \ge 3$. We focus on the setting where a smooth Riemannian metric tensor $g$ on a polyhedral domain $\Omega \subset \mathbb{R}^N$ has been approximated by a piecewise polynomial metric $g_h$ on a simplicial triangulation $\mathcal{T}$ of $\Omega$ having maximum element diameter $h$. We assume that $g_h$ possesses single-valued tangential-tangential components on every codimension-1 simplex in $\mathcal{T}$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $g_h$ to the Einstein curvature of $g$ under refinement of the triangulation. We show that in the $H^{-2}(\Omega)$-norm, this convergence takes place at a rate of $O(h^{r+1})$ when $g_h$ is an optimal-order interpolant of $g$ that is piecewise polynomial of degree $r \ge 1$. We provide numerical evidence to support this claim.

We explore the maximum likelihood degree of a homogeneous polynomial $F$ on a projective variety $X$, $\mathrm{MLD}_F(X)$, which generalizes the concept of Gaussian maximum likelihood degree. We show that $\mathrm{MLD}_F(X)$ is equal to the count of critical points of a rational function on $X$, and give different geometric characterizations of it via topological Euler characteristic, dual varieties, and Chern classes.

We study the convergence of specific inexact alternating projections for two non-convex sets in a Euclidean space. The $\sigma$-quasioptimal metric projection ($\sigma \geq 1$) of a point $x$ onto a set $A$ consists of points in $A$ the distance to which is at most $\sigma$ times larger than the minimal distance $\mathrm{dist}(x,A)$. We prove that quasioptimal alternating projections, when one or both projections are quasioptimal, converge locally and linearly for super-regular sets with transversal intersection. The theory is motivated by the successful application of alternating projections to low-rank matrix and tensor approximation. We focus on two problems -- nonnegative low-rank approximation and low-rank approximation in the maximum norm -- and develop fast alternating-projection algorithms for matrices and tensor trains based on cross approximation and acceleration techniques. The numerical experiments confirm that the proposed methods are efficient and suggest that they can be used to regularise various low-rank computational routines.

The classical Zarankiewicz's problem asks for the maximum number of edges in a bipartite graph on $n$ vertices which does not contain the complete bipartite graph $K_{t,t}$. In one of the cornerstones of extremal graph theory, K\H{o}v\'ari S\'os and Tur\'an proved an upper bound of $O(n^{2-\frac{1}{t}})$. In a celebrated result, Fox et al. obtained an improved bound of $O(n^{2-\frac{1}{d}})$ for graphs of VC-dimension $d$ (where $d<t$). Basit, Chernikov, Starchenko, Tao and Tran improved the bound for the case of semilinear graphs. At SODA'23, Chan and Har-Peled further improved Basit et al.'s bounds and presented (quasi-)linear upper bounds for several classes of geometrically-defined incidence graphs, including a bound of $O(n \log \log n)$ for the incidence graph of points and pseudo-discs in the plane. In this paper we present a new approach to Zarankiewicz's problem, via $\epsilon$-t-nets - a recently introduced generalization of the classical notion of $\epsilon$-nets. We show that the existence of `small'-sized $\epsilon$-t-nets implies upper bounds for Zarankiewicz's problem. Using the new approach, we obtain a sharp bound of $O(n)$ for the intersection graph of two families of pseudo-discs, thus both improving and generalizing the result of Chan and Har-Peled from incidence graphs to intersection graphs. We also obtain a short proof of the $O(n^{2-\frac{1}{d}})$ bound of Fox et al., and show improved bounds for several other classes of geometric intersection graphs, including a sharp $O(n\frac{\log n}{\log \log n})$ bound for the intersection graph of two families of axis-parallel rectangles.

北京阿比特科技有限公司