This paper describes and analyzes our participation in the 2023 Eval4NLP shared task, which focuses on assessing the effectiveness of prompt-based techniques to empower Large Language Models to handle the task of quality estimation, particularly in the context of evaluating machine translations and summaries. We conducted systematic experiments with various prompting techniques, including standard prompting, prompts informed by annotator instructions, and innovative chain-of-thought prompting. In addition, we integrated these approaches with zero-shot and one-shot learning methods to maximize the efficacy of our evaluation procedures. Our work reveals that combining these approaches using a "small", open source model (orca_mini_v3_7B) yields competitive results.
NFTs (Non-Fungible Tokens) have seen significant growth since they first captured public attention in 2021. However, the NFT market is plagued by fake transactions and economic bubbles, e.g., NFT wash trading. Wash trading typically refers to a transaction involving the same person or two colluding individuals, and has become a major threat to the NFT ecosystem. Previous studies only detect NFT wash trading from the financial aspect, while the real-world wash trading cases are much more complicated (e.g., not aiming at inflating the market value). There is still a lack of multi-dimension analysis to better understand NFT wash trading. Therefore, we present the most comprehensive study of NFT wash trading, analyzing 8,717,031 transfer events and 3,830,141 sale events from 2,701,883 NFTs. We first optimize the dataset collected via the OpenSea API. Next, we identify three types of NFT wash trading and propose identification algorithms. Our experimental results reveal 824 transfer events and 5,330 sale events (accounting for a total of \$8,857,070.41) and 370 address pairs related to NFT wash trading behaviors, causing a minimum loss of \$3,965,247.13. Furthermore, we provide insights from six aspects, i.e., marketplace design, profitability, NFT project design, payment token, user behavior, and NFT ecosystem
This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning. The competition asked participants to provide open-source implementations of topological neural networks from the literature by contributing to the python packages TopoNetX (data processing) and TopoModelX (deep learning). The challenge attracted twenty-eight qualifying submissions in its two-month duration. This paper describes the design of the challenge and summarizes its main findings.
We provide an optimized implementation of the forward pass of FlashAttention-2, a popular memory-aware scaled dot-product attention algorithm, as a custom fused CUDA kernel targeting NVIDIA Hopper architecture and written using the open-source CUTLASS library. In doing so, we explain the challenges and techniques involved in fusing online-softmax with back-to-back GEMM kernels, utilizing the Hopper-specific Tensor Memory Accelerator (TMA) and Warpgroup Matrix-Multiply-Accumulate (WGMMA) instructions, defining and transforming CUTLASS Layouts and Tensors, overlapping copy and GEMM operations, and choosing optimal tile sizes for the Q, K and V attention matrices while balancing the register pressure and shared memory utilization. In head-to-head benchmarks on a single H100 PCIe GPU for some common choices of hyperparameters, we observe 20-50% higher FLOPs/s over a version of FlashAttention-2 optimized for last-generation NVIDIA Ampere architecture.
In recent years, the rapid advancement and impressive capabilities of Large Language Models (LLMs) have been evident across various domains. This paper explores the application, implications, and potential of LLMs in building energy efficiency and decarbonization studies. The wide-ranging capabilities of LLMs are examined in the context of the building energy field, including intelligent control systems, code generation, data infrastructure, knowledge extraction, and education. Despite the promising potential of LLMs, challenges including complex and expensive computation, data privacy, security and copyright, complexity in fine-tuned LLMs, and self-consistency are discussed. The paper concludes with a call for future research focused on the enhancement of LLMs for domain-specific tasks, multi-modal LLMs, and collaborative research between AI and energy experts.
This document provides responses to the FDA's request for public comments (Docket No FDA 2023 N 4853) on the role of digital health technologies (DHTs) in detecting prediabetes and undiagnosed type 2 diabetes. It explores current DHT applications in prevention, detection, treatment and reversal of prediabetes, highlighting AI chatbots, online forums, wearables and mobile apps. The methods employed by DHTs to capture health signals like glucose, diet, symptoms and community insights are outlined. Key subpopulations that could benefit most from remote screening tools include rural residents, minority groups, high-risk individuals and those with limited healthcare access. Capturable high-impact risk factors encompass glycemic variability, cardiovascular parameters, respiratory health, blood biomarkers and patient reported symptoms. An array of non-invasive monitoring tools are discussed, although further research into their accuracy for diverse groups is warranted. Extensive health datasets providing immense opportunities for AI and ML based risk modeling are presented. Promising techniques leveraging EHRs, imaging, wearables and surveys to enhance screening through AI and ML algorithms are showcased. Analysis of social media and streaming data further allows disease prediction across populations. Ongoing innovation focused on inclusivity and accessibility is highlighted as pivotal in unlocking DHTs potential for transforming prediabetes and diabetes prevention and care.
An increasing number of individuals are willing to post states and opinions in social media, which has become a valuable data resource for studying human health. Furthermore, social media has been a crucial research point for healthcare now. This paper outlines the methods in our participation in the #SMM4H 2023 Shared Tasks, including data preprocessing, continual pre-training and fine-tuned optimization strategies. Especially for the Named Entity Recognition (NER) task, we utilize the model architecture named W2NER that effectively enhances the model generalization ability. Our method achieved first place in the Task 3. This paper has been peer-reviewed and accepted for presentation at the #SMM4H 2023 Workshop.
In this paper, we conduct an in-depth analysis of several key factors influencing the performance of Arabic Dialect Identification NADI'2023, with a specific focus on the first subtask involving country-level dialect identification. Our investigation encompasses the effects of surface preprocessing, morphological preprocessing, FastText vector model, and the weighted concatenation of TF-IDF features. For classification purposes, we employ the Linear Support Vector Classification (LSVC) model. During the evaluation phase, our system demonstrates noteworthy results, achieving an F1 score of 62.51%. This achievement closely aligns with the average F1 scores attained by other systems submitted for the first subtask, which stands at 72.91%.
Since September 2023, the Digital Services Act (DSA) obliges large online platforms to submit detailed data on each moderation action they take within the European Union (EU) to the DSA Transparency Database. From its inception, this centralized database has sparked scholarly interest as an unprecedented and potentially unique trove of data on real-world online moderation. Here, we thoroughly analyze all 195.61M records submitted by the eight largest social media platforms in the EU during the first 60 days of the database. Specifically, we conduct a platform-wise comparative study of their: volume of moderation actions, grounds for decision, types of applied restrictions, types of moderated content, timeliness in undertaking and submitting moderation actions, and use of automation. Furthermore, we systematically cross-check the contents of the database with the platforms' own transparency reports. Our analyses reveal that (i) the platforms adhered only in part to the philosophy and structure of the database, (ii) the structure of the database is partially inadequate for the platforms' reporting needs, (iii) the platforms exhibited substantial differences in their moderation actions, (iv) a remarkable fraction of the database data is inconsistent, (v) the platform X (formerly Twitter) presents the most inconsistencies. Our findings have far-reaching implications for policymakers and scholars across diverse disciplines. They offer guidance for future regulations that cater to the reporting needs of online platforms in general, but also highlight opportunities to improve and refine the database itself.
Learning on big data brings success for artificial intelligence (AI), but the annotation and training costs are expensive. In future, learning on small data is one of the ultimate purposes of AI, which requires machines to recognize objectives and scenarios relying on small data as humans. A series of machine learning models is going on this way such as active learning, few-shot learning, deep clustering. However, there are few theoretical guarantees for their generalization performance. Moreover, most of their settings are passive, that is, the label distribution is explicitly controlled by one specified sampling scenario. This survey follows the agnostic active sampling under a PAC (Probably Approximately Correct) framework to analyze the generalization error and label complexity of learning on small data using a supervised and unsupervised fashion. With these theoretical analyses, we categorize the small data learning models from two geometric perspectives: the Euclidean and non-Euclidean (hyperbolic) mean representation, where their optimization solutions are also presented and discussed. Later, some potential learning scenarios that may benefit from small data learning are then summarized, and their potential learning scenarios are also analyzed. Finally, some challenging applications such as computer vision, natural language processing that may benefit from learning on small data are also surveyed.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.