亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The long-range and low energy consumption requirements in Internet of Things (IoT) applications have led to a new wireless communication technology known as Low Power Wide Area Network (LPWANs). In recent years, the Long Range (LoRa) protocol has gained a lot of attention as one of the most promising technologies in LPWAN. Choosing the right combination of transmission parameters is a major challenge in the LoRa networks. In LoRa, an Adaptive Data Rate (ADR) mechanism is executed to configure each End Device's (ED) transmission parameters, resulting in improved performance metrics. In this paper, we propose a link-based ADR approach that aims to configure the transmission parameters of EDs by making a decision without taking into account the history of the last received packets, resulting in a relatively low space complexity approach. In this study, we present four different scenarios for assessing performance, including a scenario where mobile EDs are considered. Our simulation results show that in a mobile scenario with high channel noise, our proposed algorithm's Packet Delivery Ratio (PDR) is 2.8 times outperforming the original ADR and 1.35 times that of other relevant algorithms.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Over-parameterization of deep neural networks (DNNs) has shown high prediction accuracy for many applications. Although effective, the large number of parameters hinders its popularity on resource-limited devices and has an outsize environmental impact. Sparse training (using a fixed number of nonzero weights in each iteration) could significantly mitigate the training costs by reducing the model size. However, existing sparse training methods mainly use either random-based or greedy-based drop-and-grow strategies, resulting in local minimal and low accuracy. In this work, we consider the dynamic sparse training as a sparse connectivity search problem and design an exploitation and exploration acquisition function to escape from local optima and saddle points. We further design an acquisition function and provide the theoretical guarantees for the proposed method and clarify its convergence property. Experimental results show that sparse models (up to 98\% sparsity) obtained by our proposed method outperform the SOTA sparse training methods on a wide variety of deep learning tasks. On VGG-19 / CIFAR-100, ResNet-50 / CIFAR-10, ResNet-50 / CIFAR-100, our method has even higher accuracy than dense models. On ResNet-50 / ImageNet, the proposed method has up to 8.2\% accuracy improvement compared to SOTA sparse training methods.

We consider the problem of computing the capacity of a coded, multicast network over a small alphabet. We introduce a novel approach to this problem based on mixed integer programming. As an application of our approach, we recover, extend and refine various results that were previously obtained with case-by-case analyses or specialized arguments, giving evidence of the wide applicability of our approach and its potential. We also provide two simple ideas that reduce the complexity of our method for some families of networks. We conclude the paper by outlining a research program we wish to pursue in the future to investigate the capacity of large networks affected by noise, based on the approach proposed in this paper.

Tensor decomposition serves as a powerful primitive in statistics and machine learning. In this paper, we focus on using power iteration to decompose an overcomplete random tensor. Past work studying the properties of tensor power iteration either requires a non-trivial data-independent initialization, or is restricted to the undercomplete regime. Moreover, several papers implicitly suggest that logarithmically many iterations (in terms of the input dimension) are sufficient for the power method to recover one of the tensor components. In this paper, we analyze the dynamics of tensor power iteration from random initialization in the overcomplete regime. Surprisingly, we show that polynomially many steps are necessary for convergence of tensor power iteration to any of the true component, which refutes the previous conjecture. On the other hand, our numerical experiments suggest that tensor power iteration successfully recovers tensor components for a broad range of parameters, despite that it takes at least polynomially many steps to converge. To further complement our empirical evidence, we prove that a popular objective function for tensor decomposition is strictly increasing along the power iteration path. Our proof is based on the Gaussian conditioning technique, which has been applied to analyze the approximate message passing (AMP) algorithm. The major ingredient of our argument is a conditioning lemma that allows us to generalize AMP-type analysis to non-proportional limit and polynomially many iterations of the power method.

Rate-Splitting Multiple Access (RSMA) has recently found favour in the multi-antenna-aided wireless downlink, as a benefit of relaxing the accuracy of Channel State Information at the Transmitter (CSIT), while in achieving high spectral efficiency and providing security guarantees. These benefits are particularly important in high-velocity vehicular platoons since their high Doppler affects the estimation accuracy of the CSIT. To tackle this challenge, we propose an RSMA-based Internet of Vehicles (IoV) solution that jointly considers platoon control and FEderated Edge Learning (FEEL) in the downlink. Specifically, the proposed framework is designed for transmitting the unicast control messages within the IoV platoon, as well as for privacy-preserving FEEL-aided downlink Non-Orthogonal Unicasting and Multicasting (NOUM). Given this sophisticated framework, a multi-objective optimization problem is formulated to minimize both the latency of the FEEL downlink and the deviation of the vehicles within the platoon. To efficiently solve this problem, a Block Coordinate Descent (BCD) framework is developed for decoupling the main multi-objective problem into two sub-problems. Then, for solving these non-convex sub-problems, a Successive Convex Approximation (SCA) and Model Predictive Control (MPC) method is developed for solving the FEEL-based downlink problem and platoon control problem, respectively. Our simulation results show that the proposed RSMA-based IoV system outperforms the conventional systems.

With the proliferated low-Earth-orbit (LEO) satellites in mega-constellations, the future Internet will be able to reach any place on Earth, providing high-quality services to everyone. However, high-quality operations in terms of timeliness and resilience are lacking in the current solutions. This paper proposes a multi-layer networking approach called "Cross-Layer Descent (CLD)". Based on the proposed system model, principles, and measures, CLD can support foundational services such as telecommand (TC) transmissions for various network operation missions for LEO satellites compliant with the Consultative Committee for Space Data Systems (CCSDS) standards. The CLD approach enhances timing and resilience requirements using advanced communication payloads. From the simulation-based analysis, the proposed scheme outperforms other classical ones in resilience and latency for typical TC missions. The future work and conclusive remarks are discussed at the end.

Embedding tables are usually huge in click-through rate (CTR) prediction models. To train and deploy the CTR models efficiently and economically, it is necessary to compress their embedding tables at the training stage. To this end, we formulate a novel quantization training paradigm to compress the embeddings from the training stage, termed low-precision training (LPT). Also, we provide theoretical analysis on its convergence. The results show that stochastic weight quantization has a faster convergence rate and a smaller convergence error than deterministic weight quantization in LPT. Further, to reduce the accuracy degradation, we propose adaptive low-precision training (ALPT) that learns the step size (i.e., the quantization resolution) through gradient descent. Experiments on two real-world datasets confirm our analysis and show that ALPT can significantly improve the prediction accuracy, especially at extremely low bit widths. For the first time in CTR models, we successfully train 8-bit embeddings without sacrificing prediction accuracy. The code of ALPT is publicly available.

Traffic signal control is an important problem in urban mobility with a significant potential of economic and environmental impact. While there is a growing interest in Reinforcement Learning (RL) for traffic signal control, the work so far has focussed on learning through simulations which could lead to inaccuracies due to simplifying assumptions. Instead, real experience data on traffic is available and could be exploited at minimal costs. Recent progress in offline or batch RL has enabled just that. Model-based offline RL methods, in particular, have been shown to generalize from the experience data much better than others. We build a model-based learning framework which infers a Markov Decision Process (MDP) from a dataset collected using a cyclic traffic signal control policy that is both commonplace and easy to gather. The MDP is built with pessimistic costs to manage out-of-distribution scenarios using an adaptive shaping of rewards which is shown to provide better regularization compared to the prior related work in addition to being PAC-optimal. Our model is evaluated on a complex signalized roundabout showing that it is possible to build highly performant traffic control policies in a data efficient manner.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes to fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.

Attributed graph clustering is challenging as it requires joint modelling of graph structures and node attributes. Recent progress on graph convolutional networks has proved that graph convolution is effective in combining structural and content information, and several recent methods based on it have achieved promising clustering performance on some real attributed networks. However, there is limited understanding of how graph convolution affects clustering performance and how to properly use it to optimize performance for different graphs. Existing methods essentially use graph convolution of a fixed and low order that only takes into account neighbours within a few hops of each node, which underutilizes node relations and ignores the diversity of graphs. In this paper, we propose an adaptive graph convolution method for attributed graph clustering that exploits high-order graph convolution to capture global cluster structure and adaptively selects the appropriate order for different graphs. We establish the validity of our method by theoretical analysis and extensive experiments on benchmark datasets. Empirical results show that our method compares favourably with state-of-the-art methods.

北京阿比特科技有限公司