亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Due to the scarcity and specific imaging characteristics in medical images, light-weighting Vision Transformers (ViTs) for efficient medical image segmentation is a significant challenge, and current studies have not yet paid attention to this issue. This work revisits the relationship between CNNs and Transformers in lightweight universal networks for medical image segmentation, aiming to integrate the advantages of both worlds at the infrastructure design level. In order to leverage the inductive bias inherent in CNNs, we abstract a Transformer-like lightweight CNNs block (ConvUtr) as the patch embeddings of ViTs, feeding Transformer with denoised, non-redundant and highly condensed semantic information. Moreover, an adaptive Local-Global-Local (LGL) block is introduced to facilitate efficient local-to-global information flow exchange, maximizing Transformer's global context information extraction capabilities. Finally, we build an efficient medical image segmentation model (MobileUtr) based on CNN and Transformer. Extensive experiments on five public medical image datasets with three different modalities demonstrate the superiority of MobileUtr over the state-of-the-art methods, while boasting lighter weights and lower computational cost. Code is available at //github.com/FengheTan9/MobileUtr.

相關內容

圖像分割就是把圖像分成若干個特定的、具有獨特性質的區域并提出感興趣目標的技術和過程。它是由圖像處理到圖像分析的關鍵步驟。 所謂圖像分割指的是根據灰度、顏色、紋理和形狀等特征把圖像劃分成若干互不交迭的區域,并使這些特征在同一區域內呈現出相似性,而在不同區域間呈現出明顯的差異性。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

The classification of carotid artery ultrasound images is a crucial means for diagnosing carotid plaques, holding significant clinical relevance for predicting the risk of stroke. Recent research suggests that utilizing plaque segmentation as an auxiliary task for classification can enhance performance by leveraging the correlation between segmentation and classification tasks. However, this approach relies on obtaining a substantial amount of challenging-to-acquire segmentation annotations. This paper proposes a novel weakly supervised auxiliary task learning network model (WAL-Net) to explore the interdependence between carotid plaque classification and segmentation tasks. The plaque classification task is primary task, while the plaque segmentation task serves as an auxiliary task, providing valuable information to enhance the performance of the primary task. Weakly supervised learning is adopted in the auxiliary task to completely break away from the dependence on segmentation annotations. Experiments and evaluations are conducted on a dataset comprising 1270 carotid plaque ultrasound images from Wuhan University Zhongnan Hospital. Results indicate that the proposed method achieved an approximately 1.3% improvement in carotid plaque classification accuracy compared to the baseline network. Specifically, the accuracy of mixed-echoic plaques classification increased by approximately 3.3%, demonstrating the effectiveness of our approach.

Deep learning (DL) is gaining popularity as a parameter estimation method for quantitative MRI. A range of competing implementations have been proposed, relying on either supervised or self-supervised learning. Self-supervised approaches, sometimes referred to as unsupervised, have been loosely based on auto-encoders, whereas supervised methods have, to date, been trained on groundtruth labels. These two learning paradigms have been shown to have distinct strengths. Notably, self-supervised approaches have offered lower-bias parameter estimates than their supervised alternatives. This result is counterintuitive - incorporating prior knowledge with supervised labels should, in theory, lead to improved accuracy. In this work, we show that this apparent limitation of supervised approaches stems from the naive choice of groundtruth training labels. By training on labels which are deliberately not groundtruth, we show that the low-bias parameter estimation previously associated with self-supervised methods can be replicated - and improved on - within a supervised learning framework. This approach sets the stage for a single, unifying, deep learning parameter estimation framework, based on supervised learning, where trade-offs between bias and variance are made by careful adjustment of training label.

The capacity to isolate and recognize individual characters from facsimile images of papyrus manuscripts yields rich opportunities for digital analysis. For this reason the `ICDAR 2023 Competition on Detection and Recognition of Greek Letters on Papyri' was held as part of the 17th International Conference on Document Analysis and Recognition. This paper discusses our submission to the competition. We used an ensemble of YOLOv8 models to detect and classify individual characters and employed two different approaches for refining the character predictions, including a transformer based DeiT approach and a ResNet-50 model trained on a large corpus of unlabelled data using SimCLR, a self-supervised learning method. Our submission won the recognition challenge with a mAP of 42.2%, and was runner-up in the detection challenge with a mean average precision (mAP) of 51.4%. At the more relaxed intersection over union threshold of 0.5, we achieved the highest mean average precision and mean average recall results for both detection and classification. We ran our prediction pipeline on more than 4,500 images from the Oxyrhynchus Papyri to illustrate the utility of our approach, and we release the results publicly in multiple formats.

A crucial challenge for solving problems in conflict research is in leveraging the semi-supervised nature of the data that arise. Observed response data such as counts of battle deaths over time indicate latent processes of interest such as intensity and duration of conflicts, but defining and labeling instances of these unobserved processes requires nuance and imprecision. The availability of such labels, however, would make it possible to study the effect of intervention-related predictors - such as ceasefires - directly on conflict dynamics (e.g., latent intensity) rather than through an intermediate proxy like observed counts of battle deaths. Motivated by this problem and the new availability of the ETH-PRIO Civil Conflict Ceasefires data set, we propose a Bayesian autoregressive (AR) hidden Markov model (HMM) framework as a sufficiently flexible machine learning approach for semi-supervised regime labeling with uncertainty quantification. We motivate our approach by illustrating the way it can be used to study the role that ceasefires play in shaping conflict dynamics. This ceasefires data set is the first systematic and globally comprehensive data on ceasefires, and our work is the first to analyze this new data and to explore the effect of ceasefires on conflict dynamics in a comprehensive and cross-country manner.

Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide range of graph domains in a data-driven fashion; based on a message passing mechanism, GNNs have gained increasing popularity due to their intuitive formulation, closely linked with the Weisfeiler-Lehman (WL) test for graph isomorphism, to which they have proven equivalent. From a theoretical point of view, GNNs have been shown to be universal approximators, and their generalization capability (namely, bounds on the Vapnik Chervonekis (VC) dimension) has recently been investigated for GNNs with piecewise polynomial activation functions. The aim of our work is to extend this analysis on the VC dimension of GNNs to other commonly used activation functions, such as sigmoid and hyperbolic tangent, using the framework of Pfaffian function theory. Bounds are provided with respect to architecture parameters (depth, number of neurons, input size) as well as with respect to the number of colors resulting from the 1-WL test applied on the graph domain. The theoretical analysis is supported by a preliminary experimental study.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

Radiologist is "doctor's doctor", biomedical image segmentation plays a central role in quantitative analysis, clinical diagnosis, and medical intervention. In the light of the fully convolutional networks (FCN) and U-Net, deep convolutional networks (DNNs) have made significant contributions in biomedical image segmentation applications. In this paper, based on U-Net, we propose MDUnet, a multi-scale densely connected U-net for biomedical image segmentation. we propose three different multi-scale dense connections for U shaped architectures encoder, decoder and across them. The highlights of our architecture is directly fuses the neighboring different scale feature maps from both higher layers and lower layers to strengthen feature propagation in current layer. Which can largely improves the information flow encoder, decoder and across them. Multi-scale dense connections, which means containing shorter connections between layers close to the input and output, also makes much deeper U-net possible. We adopt the optimal model based on the experiment and propose a novel Multi-scale Dense U-Net (MDU-Net) architecture with quantization. Which reduce overfitting in MDU-Net for better accuracy. We evaluate our purpose model on the MICCAI 2015 Gland Segmentation dataset (GlaS). The three multi-scale dense connections improve U-net performance by up to 1.8% on test A and 3.5% on test B in the MICCAI Gland dataset. Meanwhile the MDU-net with quantization achieves the superiority over U-Net performance by up to 3% on test A and 4.1% on test B.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司