亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the dominance and effectiveness of scaling, resulting in large networks with hundreds of billions of parameters, the necessity to train overparametrized models remains poorly understood, and alternative approaches do not necessarily make it cheaper to train high-performance models. In this paper, we explore low-rank training techniques as an alternative approach to training large neural networks. We introduce a novel method called ReLoRA, which utilizes low-rank updates to train high-rank networks. We apply ReLoRA to pre-training transformer language models with up to 350M parameters and demonstrate comparable performance to regular neural network training. Furthermore, we observe that the efficiency of ReLoRA increases with model size, making it a promising approach for training multi-billion-parameter networks efficiently. Our findings shed light on the potential of low-rank training techniques and their implications for scaling laws.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

With the shrinking of technology nodes and the use of parallel processor clusters in hostile and critical environments, such as space, run-time faults caused by radiation are a serious cross-cutting concern, also impacting architectural design. This paper introduces an architectural approach to run-time configurable soft-error tolerance at the core level, augmenting a six-core open-source RISC-V cluster with a novel On-Demand Redundancy Grouping (ODRG) scheme. ODRG allows the cluster to operate either as two fault-tolerant cores, or six individual cores for high-performance, with limited overhead to switch between these modes during run-time. The ODRG unit adds less than 11% of a core's area for a three-core group, or a total of 1% of the cluster area, and shows negligible timing increase, which compares favorably to a commercial state-of-the-art implementation, and is 2.5$\times$ faster in fault recovery re-synchronization. Furthermore, when redundancy is not necessary, the ODRG approach allows the redundant cores to be used for independent computation, allowing up to 2.96$\times$ increase in performance for selected applications.

In the era of data-driven Music Information Retrieval (MIR), the scarcity of labeled data has been one of the major concerns to the success of an MIR task. In this work, we leverage the semi-supervised teacher-student training approach to improve MIR tasks. For training, we scale up the unlabeled music data to 240k hours, which is much larger than any public MIR datasets. We iteratively create and refine the pseudo-labels in the noisy teacher-student training process. Knowledge expansion is also explored to iteratively scale up the model sizes from as small as less than 3M to almost 100M parameters. We study the performance correlation between data size and model size in the experiments. By scaling up both model size and training data, our models achieve state-of-the-art results on several MIR tasks compared to models that are either trained in a supervised manner or based on a self-supervised pretrained model. To our knowledge, this is the first attempt to study the effects of scaling up both model and training data for a variety of MIR tasks.

This paper investigates Support Vector Regression (SVR) in the context of the fundamental risk quadrangle theory, which links optimization, risk management, and statistical estimation. It is shown that both formulations of SVR, $\varepsilon$-SVR and $\nu$-SVR, correspond to the minimization of equivalent error measures (Vapnik error and CVaR norm, respectively) with a regularization penalty. These error measures, in turn, define the corresponding risk quadrangles. By constructing the fundamental risk quadrangle, which corresponds to SVR, we show that SVR is the asymptotically unbiased estimator of the average of two symmetric conditional quantiles. Further, we prove the equivalence of the $\varepsilon$-SVR and $\nu$-SVR in a general stochastic setting. Additionally, SVR is formulated as a regular deviation minimization problem with a regularization penalty. Finally, the dual formulation of SVR in the risk quadrangle framework is derived.

Deployable Large Language Models (LLMs) must conform to the criterion of helpfulness and harmlessness, thereby achieving consistency between LLMs outputs and human values. Red-teaming techniques constitute a critical way towards this criterion. Existing work rely solely on manual red team designs and heuristic adversarial prompts for vulnerability detection and optimization. These approaches lack rigorous mathematical formulation, thus limiting the exploration of diverse attack strategy within quantifiable measure and optimization of LLMs under convergence guarantees. In this paper, we present Red-teaming Game (RTG), a general game-theoretic framework without manual annotation. RTG is designed for analyzing the multi-turn attack and defense interactions between Red-team language Models (RLMs) and Blue-team Language Model (BLM). Within the RTG, we propose Gamified Red-teaming Solver (GRTS) with diversity measure of the semantic space. GRTS is an automated red teaming technique to solve RTG towards Nash equilibrium through meta-game analysis, which corresponds to the theoretically guaranteed optimization direction of both RLMs and BLM. Empirical results in multi-turn attacks with RLMs show that GRTS autonomously discovered diverse attack strategies and effectively improved security of LLMs, outperforming existing heuristic red-team designs. Overall, RTG has established a foundational framework for red teaming tasks and constructed a new scalable oversight technique for alignment.

In uniform-price markets, suppliers compete to supply a resource to consumers, resulting in a single market price determined by their competition. For sufficient flexibility, producers and consumers prefer to commit to a function as their strategies, indicating their preferred quantity at any given market price. Producers and consumers may wish to act as both, i.e., prosumers. In this paper, we examine the behavior of profit-maximizing prosumers in a uniform-price market for resource allocation with the objective of maximizing the social welfare. We propose a scalar-parameterized function bidding mechanism for the prosumers, in which we establish the existence and uniqueness of Nash equilibrium. Furthermore, we provide an efficient way to compute the Nash equilibrium through the computation of the market allocation at the Nash equilibrium. Finally, we present a case study to illustrate the welfare loss under different variations of market parameters, such as the market's supply capacity and inelastic demand.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{//shaunyuan22.github.io/SODA}.

Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.

One of the key requirements to facilitate semantic analytics of information regarding contemporary and historical events on the Web, in the news and in social media is the availability of reference knowledge repositories containing comprehensive representations of events and temporal relations. Existing knowledge graphs, with popular examples including DBpedia, YAGO and Wikidata, focus mostly on entity-centric information and are insufficient in terms of their coverage and completeness with respect to events and temporal relations. EventKG presented in this paper is a multilingual event-centric temporal knowledge graph that addresses this gap. EventKG incorporates over 690 thousand contemporary and historical events and over 2.3 million temporal relations extracted from several large-scale knowledge graphs and semi-structured sources and makes them available through a canonical representation.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司