亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reconfigurable intelligent surface (RIS) technology is emerging as a promising technique for performance enhancement for next-generation wireless networks. This paper investigates the physical layer security of an RIS-assisted multiple-antenna communication system in the presence of random spatially distributed eavesdroppers. The RIS-to-ground channels are assumed to experience Rician fading. Using stochastic geometry, exact distributions of the received signal-to-noise-ratios (SNRs) at the legitimate user and the eavesdroppers located according to a Poisson point process (PPP) are derived, and closed-form expressions for the secrecy outage probability (SOP) and the ergodic secrecy capacity (ESC) are obtained to provide insightful guidelines for system design. First, the secrecy diversity order is obtained as $\frac{2}{\alpha_2}$, where $\alpha_2$ denotes the path loss exponent of the RIS-to-ground links. Then, it is revealed that the secrecy performance is mainly affected by the number of RIS reflecting elements, $N$, and the impact of the number of transmit antennas and transmit power at the base station is marginal. In addition, when the locations of the randomly located eavesdroppers are unknown, deploying the RIS closer to the legitimate user rather than to the base station is shown to be more efficient. Moreover, it is also found that the density of randomly located eavesdroppers, $\lambda_e$, has an additive effect on the asymptotic ESC performance given by $\log_2{\left({1}/{\lambda_e}\right)}$. Finally, numerical simulations are conducted to verify the accuracy of these theoretical observations.

相關內容

Safe operation of multi-robot systems is critical, especially in communication-degraded environments such as underwater for seabed mapping, underground caves for navigation, and in extraterrestrial missions for assembly and construction. We address safety of networked autonomous systems where the information exchanged between robots incurs communication delays. We formalize a notion of distributed control barrier function (CBF) for multi-robot systems, a safety certificate amenable to a distributed implementation, which provides formal ground to using graph neural networks to learn safe distributed controllers. Further, we observe that learning a distributed controller ignoring delays can severely degrade safety. Our main contribution is a predictor-based framework to train a safe distributed controller under communication delays, where the current state of nearby robots is predicted from received data and age-of-information. Numerical experiments on multi-robot collision avoidance show that our predictor-based approach can significantly improve the safety of a learned distributed controller under communication delays

Modern policy optimization methods in reinforcement learning, such as TRPO and PPO, owe their success to the use of parameterized policies. However, while theoretical guarantees have been established for this class of algorithms, especially in the tabular setting, the use of general parameterization schemes remains mostly unjustified. In this work, we introduce a novel framework for policy optimization based on mirror descent that naturally accommodates general parameterizations. The policy class induced by our scheme recovers known classes, e.g., softmax, and generates new ones depending on the choice of mirror map. Using our framework, we obtain the first result that guarantees linear convergence for a policy-gradient-based method involving general parameterization. To demonstrate the ability of our framework to accommodate general parameterization schemes, we provide its sample complexity when using shallow neural networks, show that it represents an improvement upon the previous best results, and empirically validate the effectiveness of our theoretical claims on classic control tasks.

To evaluate code large language models (LLMs), research has relied on a few small manually curated benchmarks, such as HumanEval and MBPP, which represent a narrow part of the real-world software domains. In this work, we introduce round-trip correctness (RTC) as an alternative evaluation method. RTC allows Code LLM evaluation on a broader spectrum of real-world software domains without the need for costly human curation. RTC rests on the idea that we can ask a model to make a prediction (e.g., describe some code using natural language), feed that prediction back (e.g., synthesize code from the predicted description), and check if this round-trip leads to code that is semantically equivalent to the original input. We show how to employ RTC to evaluate code synthesis and editing. We find that RTC strongly correlates with model performance on existing narrow-domain code synthesis benchmarks while allowing us to expand to a much broader set of domains and tasks which was not previously possible without costly human annotations.

Adapting to a priori unknown noise level is a very important but challenging problem in sequential decision-making as efficient exploration typically requires knowledge of the noise level, which is often loosely specified. We report significant progress in addressing this issue in linear bandits in two respects. First, we propose a novel confidence set that is `semi-adaptive' to the unknown sub-Gaussian parameter $\sigma_*^2$ in the sense that the (normalized) confidence width scales with $\sqrt{d\sigma_*^2 + \sigma_0^2}$ where $d$ is the dimension and $\sigma_0^2$ is the specified sub-Gaussian parameter (known) that can be much larger than $\sigma_*^2$. This is a significant improvement over $\sqrt{d\sigma_0^2}$ of the standard confidence set of Abbasi-Yadkori et al. (2011), especially when $d$ is large. We show that this leads to an improved regret bound in linear bandits. Second, for bounded rewards, we propose a novel variance-adaptive confidence set that has a much improved numerical performance upon prior art. We then apply this confidence set to develop, as we claim, the first practical variance-adaptive linear bandit algorithm via an optimistic approach, which is enabled by our novel regret analysis technique. Both of our confidence sets rely critically on `regret equality' from online learning. Our empirical evaluation in Bayesian optimization tasks shows that our algorithms demonstrate better or comparable performance compared to existing methods.

The robotic field has been witnessing a progressive departure from classic robotic systems composed of serial/stiff links interconnected by simple rigid joints. Novel robotic concepts, e.g., soft robots, often maintain a series-like structure, but their mechanical modules exhibit complex and unconventional articulation patterns. Research in efficient recursive formulations of the dynamic models for subclasses of these systems has been extremely active in the past decade. Yet, as of today, no single recursive inverse dynamics algorithm can describe the behavior of all these systems. This paper addresses this challenge by proposing a new iterative formulation based on Kane equations. Its computational complexity is optimal, i.e., linear with the number of modules. While the proposed formulation is not claimed to be necessarily more efficient than state-of-the-art techniques for specific subclasses of robots, we illustrate its usefulness in the modeling of different complex systems. We propose two new models of soft robots: (i) a class of pneumatically actuated soft arms that deform along their cross-sectional area, and (ii) a piecewise strain model with Gaussian functions.

The total energy cost of computing activities is steadily increasing and projections indicate that it will be one of the dominant global energy consumers in the coming decades. However, perhaps due to its relative youth, the video game sector has not yet developed the same level of environmental awareness as other computing technologies despite the estimated three billion regular video game players in the world. This work evaluates the energy consumption of the most widely used industry-scale video game engines: Unity and Unreal Engine. Specifically, our work uses three scenarios representing relevant aspects of video games (Physics, Statics Meshes, and Dynamic Meshes) to compare the energy consumption of the engines. The aim is to determine the influence of using each of the two engines on energy consumption. Our research has confirmed significant differences in the energy consumption of video game engines: 351% in Physics in favor of Unity, 17% in Statics Meshes in favor of Unity, and 26% in Dynamic Meshes in favor of Unreal Engine. These results represent an opportunity for worldwide potential savings of at least 51 TWh per year, equivalent to the annual consumption of nearly 13 million European households, that might encourage a new branch of research on energy-efficient video game engines.

Reconfigurable intelligent surface (RIS) is a promising solution to deal with the blockage-sensitivity of millimeter wave band and reduce the high energy consumption caused by network densification. However, deploying large scale RISs may not bring expected performance gain due to significant channel estimation overhead and non-negligible reflected interference. In this paper, we derive the analytical expressions of the coverage probability, area spectrum efficiency (ASE) and energy efficiency (EE) of a downlink RIS-aided multi-cell network. In order to optimize the network performance, we investigate the conditions for the optimal number of training symbols of each antenna-to-antenna and antenna-to-element path (referred to as the optimal unit training overhead) in channel estimation. Our study shows that: 1) RIS deployment is not `the more, the better', only when blockage objects are dense should one deploy more RISs; 2) the coverage probability is maximized when the unit training overhead is designed as large as possible; 3) however, the ASE-and-EE-optimal unit training overhead exists. It is a monotonically increasing function of the frame length and a monotonically decreasing function of the average signal-to-noise-ratio (in the high signal-to-noise-ratio region). Additionally, the optimal unit training overhead is smaller when communication ends deploy particularly few or many antennas.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司