亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Safe operation of multi-robot systems is critical, especially in communication-degraded environments such as underwater for seabed mapping, underground caves for navigation, and in extraterrestrial missions for assembly and construction. We address safety of networked autonomous systems where the information exchanged between robots incurs communication delays. We formalize a notion of distributed control barrier function (CBF) for multi-robot systems, a safety certificate amenable to a distributed implementation, which provides formal ground to using graph neural networks to learn safe distributed controllers. Further, we observe that learning a distributed controller ignoring delays can severely degrade safety. Our main contribution is a predictor-based framework to train a safe distributed controller under communication delays, where the current state of nearby robots is predicted from received data and age-of-information. Numerical experiments on multi-robot collision avoidance show that our predictor-based approach can significantly improve the safety of a learned distributed controller under communication delays

相關內容

While much work has been done recently in the realm of model-based control of soft robots and soft-rigid hybrids, most works examine robots that have an inherently serial structure. While these systems have been prevalent in the literature, there is an increasing trend toward designing soft-rigid hybrids with intrinsically coupled elasticity between various degrees of freedom. In this work, we seek to address the issues of modeling and controlling such structures, particularly when underactuated. We introduce several simple models for elastic coupling, typical of those seen in these systems. We then propose a controller that compensates for the elasticity, and we prove its stability with Lyapunov methods without relying on the elastic dominance assumption. This controller is applicable to the general class of underactuated soft robots. After evaluating the controller in simulated cases, we then develop a simple hardware platform to evaluate both the models and the controller. Finally, using the hardware, we demonstrate a novel use case for underactuated, elastically coupled systems in "sensorless" force control.

Uncertainties arising in various control systems, such as robots that are subject to unknown disturbances or environmental variations, pose significant challenges for ensuring system safety, such as collision avoidance. At the same time, safety specifications are getting more and more complex, e.g., by composing multiple safety objectives through Boolean operators resulting in non-smooth descriptions of safe sets. Control Barrier Functions (CBFs) have emerged as a control technique to provably guarantee system safety. In most settings, they rely on an assumption of having deterministic dynamics and smooth safe sets. This paper relaxes these two assumptions by extending CBFs to encompass control systems with stochastic dynamics and safe sets defined by non-smooth functions. By explicitly considering the stochastic nature of system dynamics and accommodating complex safety specifications, our method enables the design of safe control strategies in uncertain and complex systems. We provide formal guarantees on the safety of the system by leveraging the theoretical foundations of stochastic CBFs and non-smooth safe sets. Numerical simulations demonstrate the effectiveness of the approach in various scenarios.

Communication-sensing integration represents an up-and-coming area of research, enabling wireless networks to simultaneously perform communication and sensing tasks. However, in urban cellular networks, the blockage of buildings results in a complex signal propagation environment, affecting the performance analysis of integrated sensing and communication (ISAC) networks. To overcome this obstacle, this paper constructs a comprehensive framework considering building blockage and employs a distance-correlated blockage model to analyze interference from line of sight (LoS), non-line of sight (NLoS), and target reflection cascading (TRC) links. Using stochastic geometric theory, expressions for signal-to-interference-plus-noise ratio (SINR) and coverage probability for communication and sensing in the presence of blockage are derived, allowing for a comprehensive comparison under the same parameters. The research findings indicate that blockage can positively impact coverage, especially in enhancing communication performance. The analysis also suggests that there exists an optimal base station (BS) density when blockage is of the same order of magnitude as the BS density, maximizing communication or sensing coverage probability.

Sensor measurements are mission-critical for monitoring and controlling power systems because they provide real-time insight into the grid operating condition; however, confidence in these insights depends greatly on the quality of the sensor data. Uncertainty in sensor measurements is an intrinsic aspect of the measurement process. In this paper, we develop an analytical method to quantify the impact of measurement uncertainties in numerical methods that employ the Koopman operator to identify nonlinear dynamics based on recorded data. In particular, we quantify the confidence interval of each element in the push-forward matrix from which a subset of the Koopman operator's discrete spectrum is estimated. We provide a detailed numerical analysis of the developed method applied to numerical simulations and field data collected from experiments conducted in a megawatt-scale facility at the National Renewable Energy Laboratory.

Efficient path planning for autonomous mobile robots is a critical problem across numerous domains, where optimizing both time and energy consumption is paramount. This paper introduces a novel methodology that considers the dynamic influence of an environmental flow field and considers geometric constraints, including obstacles and forbidden zones, enriching the complexity of the planning problem. We formulate it as a multi-objective optimal control problem, propose a novel transformation called Harmonic Transformation, and apply a semi-Lagrangian scheme to solve it. The set of Pareto efficient solutions is obtained considering two distinct approaches: a deterministic method and an evolutionary-based one, both of which are designed to make use of the proposed Harmonic Transformation. Through an extensive analysis of these approaches, we demonstrate their efficacy in finding optimized paths.

Force interaction is inevitable when robots face multiple operation scenarios. How to make the robot competent in force control for generalized operations such as multi-tasks still remains a challenging problem. Aiming at the reproducibility of interaction tasks and the lack of a generalized force control framework for multi-task scenarios, this paper proposes a novel hybrid control framework based on active admittance control with iterative learning parameters-tunning mechanism. The method adopts admittance control as the underlying algorithm to ensure flexibility, and iterative learning as the high-level algorithm to regulate the parameters of the admittance model. The whole algorithm has flexibility and learning ability, which is capable of achieving the goal of excellent versatility. Four representative interactive robot manipulation tasks are chosen to investigate the consistency and generalisability of the proposed method. Experiments are designed to verify the effectiveness of the whole framework, and an average of 98.21% and 91.52% improvement of RMSE is obtained relative to the traditional admittance control as well as the model-free adaptive control, respectively.

In the evolving landscape of clinical informatics, the integration and utilization of software tools developed through governmental funding represent a pivotal advancement in research and application. However, the dispersion of these tools across various repositories, with no centralized knowledge base, poses significant challenges to leveraging their full potential. This study introduces an automated methodology to bridge this gap by systematically extracting GitHub repository URLs from academic papers indexed in arXiv, focusing on the field of clinical informatics. Our approach encompasses querying the arXiv API for relevant papers, cleaning extracted GitHub URLs, fetching comprehensive repository information via the GitHub API, and analyzing repository maturity based on defined metrics such as stars, forks, open issues, and contributors. The process is designed to be robust, incorporating error handling and rate limiting to ensure compliance with API constraints. Preliminary findings demonstrate the efficacy of this methodology in compiling a centralized knowledge base of NIH-funded software tools, laying the groundwork for an enriched understanding and utilization of these resources within the clinical informatics community. We propose the future integration of Large Language Models (LLMs) to generate concise summaries and evaluations of the tools. This approach facilitates the discovery and assessment of clinical informatics tools and also enables ongoing monitoring of new and actively updated repositories, revolutionizing how researchers access and leverage federally funded software. The implications of this study extend beyond simplification of access to valuable resources; it proposes a scalable model for the dynamic aggregation and evaluation of scientific software, encouraging more collaborative, transparent, and efficient research practices in clinical informatics and beyond.

Hyperproperties are commonly used in computer security to define information-flow policies and other requirements that reason about the relationship between multiple computations. In this paper, we study a novel class of hyperproperties where the individual computation paths are chosen by the strategic choices of a coalition of agents in a multi-agent system. We introduce HyperATL*, an extension of computation tree logic with path variables and strategy quantifiers. Our logic can express strategic hyperproperties, such as that the scheduler in a concurrent system has a strategy to avoid information leakage. HyperATL* is particularly useful to specify asynchronous hyperproperties, i.e., hyperproperties where the speed of the execution on the different computation paths depends on the choices of the scheduler. Unlike other recent logics for the specification of asynchronous hyperproperties, our logic is the first to admit decidable model checking for the full logic. We present a model checking algorithm for HyperATL* based on alternating automata, and show that our algorithm is asymptotically optimal by providing a matching lower bound. We have implemented a prototype model checker for a fragment of HyperATL*, able to check various security properties on small programs.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司