In this paper, we analyze the performance of a reconfigurable intelligent surface (RIS)-assisted multi-hop transmission by employing multiple RIS units to enable favorable communication for a mixed free-space optical (FSO) and radio-frequency (RF) system. We consider a single-element RIS since it is hard to realize phase compensation for multiple-element RIS in the multi-hop scenario. We develop statistical results for the product of the signal-to-noise ratio (SNR) of the cascaded multiple RIS-equipped wireless communication. We use decode-and-forward (DF) and fixed-gain (FG) relaying protocols to mix multi-RIS transmissions over RF and FSO technologies and derive probability density and distribution functions for both the relaying schemes by considering independent and nonidentical double generalized gamma (dGG) distribution models for RF transmissions with line-of-sight (LOS) and inverse-Gamma shadowing effect and atmospheric turbulence for FSO system combined with pointing errors. We analyze the outage probability, and average bit-error rate (BER) performance of the considered system. We also present an asymptotic analysis of the outage probability using gamma functions to provide insight into the considered system in the high SNR regime. We use computer simulations to validate the derived analytical expressions and demonstrate the performance for different system parameters on the RIS-assisted multi-hop transmissions for a vehicular communication system.
In this paper, we present a novel approach to navigating endoluminal channels, specifically within the bronchial tubes, using Q-learning, a reinforcement learning algorithm. The proposed method involves training a Q-learning agent to navigate a simulated environment resembling bronchial tubes, with the ultimate goal of enabling the navigation of real bronchial tubes. We discuss the formulation of the problem, the simulation environment, the Q-learning algorithm, and the results of our experiments. Our results demonstrate the agent's ability to learn effective navigation strategies and reach predetermined goals within the simulated environment. This research contributes to the development of autonomous robotic systems for medical applications, particularly in challenging anatomical environments.
In this paper, we compute numerical approximations of the minimal surfaces, an essential type of Partial Differential Equation (PDE), in higher dimensions. Classical methods cannot handle it in this case because of the Curse of Dimensionality, where the computational cost of these methods increases exponentially fast in response to higher problem dimensions, far beyond the computing capacity of any modern supercomputers. Only in the past few years have machine learning researchers been able to mitigate this problem. The solution method chosen here is a model known as a Physics-Informed Neural Network (PINN) which trains a deep neural network (DNN) to solve the minimal surface PDE. It can be scaled up into higher dimensions and trained relatively quickly even on a laptop with no GPU. Due to the inability to view the high-dimension output, our data is presented as snippets of a higher-dimension shape with enough fixed axes so that it is viewable with 3-D graphs. Not only will the functionality of this method be tested, but we will also explore potential limitations in the method's performance.
In this paper, we investigate the performance of reconfigurable intelligent surface (RIS)-aided spatial shift keying (SSK) wireless communication systems in the presence of imperfect channel state information (CSI). Specifically, we analyze the average bit error probability (ABEP) of two RIS-SSK systems respectively based on intelligent reflection and blind reflection of RIS. For the intelligent RIS-SSK scheme, we first derive the conditional pairwise error probability of the composite channel through maximum likelihood (ML) detection. Subsequently, we derive the probability density function of the combined channel. Due to the intricacies of the composite channel formulation, an exact closed-form ABEP expression is unattainable through direct derivation. To this end, we resort to employing the Gaussian-Chebyshev quadrature method to estimate the results. In addition, we employ the Q-function approximation to derive the non-exact closed-form expression when CSI imperfections are present. For the blind RIS-SSK scheme, we derive both closed-form ABEP expression and asymptotic ABEP expression with imperfect CSI by adopting the ML detector. To offer deeper insights, we explore the impact of discrete reflection phase shifts on the performance of the RIS-SSK system. Lastly, we extensively validate all the analytical derivations using Monte Carlo simulations.
For fine-grained generation and recognition tasks such as minimally-supervised text-to-speech (TTS), voice conversion (VC), and automatic speech recognition (ASR), the intermediate representations extracted from speech should serve as a "bridge" between text and acoustic information, containing information from both modalities. The semantic content is emphasized, while the paralinguistic information such as speaker identity and acoustic details should be de-emphasized. However, existing methods for extracting fine-grained intermediate representations from speech suffer from issues of excessive redundancy and dimension explosion. Contrastive learning is a good method for modeling intermediate representations from two modalities. However, existing contrastive learning methods in the audio field focus on extracting global descriptive information for downstream audio classification tasks, making them unsuitable for TTS, VC, and ASR tasks. To address these issues, we propose a method named "Contrastive Token-Acoustic Pretraining (CTAP)", which uses two encoders to bring phoneme and speech into a joint multimodal space, learning how to connect phoneme and speech at the frame level. The CTAP model is trained on 210k speech and phoneme text pairs, achieving minimally-supervised TTS, VC, and ASR. The proposed CTAP method offers a promising solution for fine-grained generation and recognition downstream tasks in speech processing.
In this paper, we compute numerical approximations of the minimal surfaces, an essential type of Partial Differential Equation (PDE), in higher dimensions. Classical methods cannot handle it in this case because of the Curse of Dimensionality, where the computational cost of these methods increases exponentially fast in response to higher problem dimensions, far beyond the computing capacity of any modern supercomputers. Only in the past few years have machine learning researchers been able to mitigate this problem. The solution method chosen here is a model known as a Physics-Informed Neural Network (PINN) which trains a deep neural network (DNN) to solve the minimal surface PDE. It can be scaled up into higher dimensions and trained relatively quickly even on a laptop with no GPU. Due to the inability to view the high-dimension output, our data is presented as snippets of a higher-dimension shape with enough fixed axes so that it is viewable with 3-D graphs. Not only will the functionality of this method be tested, but we will also explore potential limitations in the method's performance.
In this paper, we investigate federated clustering (FedC) problem, that aims to accurately partition unlabeled data samples distributed over massive clients into finite clusters under the orchestration of a parameter server, meanwhile considering data privacy. Though it is an NP-hard optimization problem involving real variables denoting cluster centroids and binary variables denoting the cluster membership of each data sample, we judiciously reformulate the FedC problem into a non-convex optimization problem with only one convex constraint, accordingly yielding a soft clustering solution. Then a novel FedC algorithm using differential privacy (DP) technique, referred to as DP-FedC, is proposed in which partial clients participation and multiple local model updating steps are also considered. Furthermore, various attributes of the proposed DP-FedC are obtained through theoretical analyses of privacy protection and convergence rate, especially for the case of non-identically and independently distributed (non-i.i.d.) data, that ideally serve as the guidelines for the design of the proposed DP-FedC. Then some experimental results on two real datasets are provided to demonstrate the efficacy of the proposed DP-FedC together with its much superior performance over some state-of-the-art FedC algorithms, and the consistency with all the presented analytical results.
In this paper, we investigate the convergence properties of the stochastic gradient descent (SGD) method and its variants, especially in training neural networks built from nonsmooth activation functions. We develop a novel framework that assigns different timescales to stepsizes for updating the momentum terms and variables, respectively. Under mild conditions, we prove the global convergence of our proposed framework in both single-timescale and two-timescale cases. We show that our proposed framework encompasses a wide range of well-known SGD-type methods, including heavy-ball SGD, SignSGD, Lion, normalized SGD and clipped SGD. Furthermore, when the objective function adopts a finite-sum formulation, we prove the convergence properties for these SGD-type methods based on our proposed framework. In particular, we prove that these SGD-type methods find the Clarke stationary points of the objective function with randomly chosen stepsizes and initial points under mild assumptions. Preliminary numerical experiments demonstrate the high efficiency of our analyzed SGD-type methods.
In this paper, we propose an efficient decoding algorithm for short low-density parity check (LDPC) codes by carefully combining the belief propagation (BP) decoding and order statistic decoding (OSD) algorithms. Specifically, a modified BP (mBP) algorithm is applied for a certain number of iterations prior to OSD to enhance the reliability of the received message, where an offset parameter is utilized in mBP to control the weight of the extrinsic information in message passing. By carefully selecting the offset parameter and the number of mBP iterations, the number of errors in the most reliable positions (MRPs) in OSD can be reduced by mBP, thereby significantly improving the overall decoding performance of error rate and complexity. Simulation results show that the proposed algorithm can approach the maximum-likelihood decoding (MLD) for short LDPC codes with only a slight increase in complexity compared to BP and a significant decrease compared to OSD. Specifically, the order-(m-1) decoding of the proposed algorithm can achieve the performance of the order-m OSD.
Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.