Power dynamics influence every aspect of scientific collaboration. Team power dynamics can be measured by team power level and team power hierarchy. Team power level is conceptualized as the average level of the possession of resources, expertise, or decision-making authorities of a team. Team power hierarchy represents the vertical differences of the possessions of resources in a team. In Science of Science, few studies have looked at scientific collaboration from the perspective of team power dynamics. This research examines how team power dynamics affect team impact to fill the research gap. In this research, all co-authors of one publication are treated as one team. Team power level and team power hierarchy of one team are measured by the mean and Gini index of career age of co-authors in this team. Team impact is quantified by citations of a paper authored by this team. By analyzing over 7.7 million teams from Science (e.g., Computer Science, Physics), Social Sciences (e.g., Sociology, Library & Information Science), and Arts & Humanities (e.g., Art), we find that flat team structure is associated with higher team impact, especially when teams have high team power level. These findings have been repeated in all five disciplines except Art, and are consistent in various types of teams from Computer Science including teams from industry or academia, teams with different gender groups, teams with geographical contrast, and teams with distinct size.
In many synthesis problems, it can be essential to generate implementations which not only satisfy functional constraints but are also randomized to improve variety, robustness, or unpredictability. The recently-proposed framework of control improvisation (CI) provides techniques for the correct-by-construction synthesis of randomized systems subject to hard and soft constraints. However, prior work on CI has focused on qualitative specifications, whereas in robotic planning and other areas we often have quantitative quality metrics which can be traded against each other. For example, a designer of a patrolling security robot might want to know by how much the average patrol time needs to be increased in order to ensure that a particular aspect of the robot's route is sufficiently diverse and hence unpredictable. In this paper, we enable this type of application by generalizing the CI problem to support quantitative soft constraints which bound the expected value of a given cost function, and randomness constraints which enforce diversity of the generated traces with respect to a given label function. We establish the basic theory of labelled quantitative CI problems, and develop efficient algorithms for solving them when the specifications are encoded by finite automata. We also provide an approximate improvisation algorithm based on constraint solving for any specifications encodable as Boolean formulas. We demonstrate the utility of our problem formulation and algorithms with experiments applying them to generate diverse near-optimal plans for robotic planning problems.
As sustainability becomes an increasing priority throughout global society, academic and research institutions are assessed on their contribution to relevant research publications. This study compares four methods of identifying research publications related to United Nations Sustainable Development Goal 13: climate action. The four methods, Elsevier, STRINGS, SIRIS, and Dimensions have each developed search strings with the help of subject matter experts which are then enhanced through distinct methods to produce a final set of publications. Our analysis showed that the methods produced comparable quantities of publications but with little overlap between them. We visualised some difference in topic focus between the methods and drew links with the search strategies used. Differences between publications retrieved are likely to come from subjective interpretation of the goals, keyword selection, operationalising search strategies, AI enhancements, and selection of bibliographic database. Many of these are driven by human choices and the compound effect of the differences is likely to have resulted in non-overlapping publication sets. Each of the elements warrants deeper investigation to understand their role in identifying SDG-related research. Currently, it premature to rely on any one method to assess progress against the goal.
The standard approach to personalization in machine learning consists of training a model with group attributes like sex, age group, and blood type. In this work, we show that this approach to personalization fails to improve performance for all groups who provide personal data. We discuss how this effect inflicts harm in applications where models assign predictions on the basis of group membership. We propose collective preference guarantees to ensure the fair use of group attributes in prediction. We characterize how common approaches to personalization violate fair use due to failures in model development and deployment. We conduct a comprehensive empirical study of personalization in clinical prediction models. Our results highlight the prevalence of fair use violations, demonstrate actionable interventions to mitigate harm and underscore the need to measure the gains of personalization for all groups who provide personal data.
This short paper introduces the u-index, a simple and objective metric to evaluate the impact and relevance of academic research output, as a possible alternative to widespread metrics such as the h-index or the i10-index. The proposed index is designed to address possible issues with standard metrics such as inflated ratings resulting from self-citations or by means of extended co-authorship numbers where every citation has the same impact as for works written by smaller groups, despite limited individual contributions. The new index makes also possible to differentiate scholars who would otherwise fall into the same h-index group, hence providing further insights into the actual impact of a specific individual researcher.
With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why -- they not only provide the user with the recommendations, but also make the user aware why such items are recommended by generating recommendation explanations, which help to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommender systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first high-light the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a chapter to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.