We study optimal transport problems in which finite-valued quantities of interest evolve dynamically over time in a stationary fashion. Mathematically, this is a special case of the general optimal transport problem in which the distributions under study represent stationary processes and the cost depends on a finite number of time points. In this setting, we argue that one should restrict attention to stationary couplings, also known as joinings, which have close connections with long run average cost. We introduce estimators of both optimal joinings and the optimal joining cost, and we establish their consistency under mild conditions. Under stronger mixing assumptions we establish finite-sample error rates for the same estimators that extend the best known results in the iid case. Finally, we extend the consistency and rate analysis to an entropy-penalized version of the optimal joining problem.
We consider nonparametric invariant density and drift estimation for a class of multidimensional degenerate resp. hypoelliptic diffusion processes, so-called stochastic damping Hamiltonian systems or kinetic diffusions, under anisotropic smoothness assumptions on the unknown functions. The analysis is based on continuous observations of the process, and the estimators' performance is measured in terms of the sup-norm loss. Regarding invariant density estimation, we obtain highly nonclassical results for the rate of convergence, which reflect the inhomogeneous variance structure of the process. Concerning estimation of the drift vector, we suggest both non-adaptive and fully data-driven procedures. All of the aforementioned results strongly rely on tight uniform moment bounds for empirical processes associated to deterministic and stochastic integrals of the investigated process, which are also proven in this paper.
We present a machine learning based approach to address the study of transport processes, ubiquitous in continuous mechanics, with particular attention to those phenomena ruled by complex micro-physics, impractical to theoretical investigation, yet exhibiting emergent behavior describable by a closed mathematical expression. Our machine learning model, built using simple components and following a few well established practices, is capable of learning latent representations of the transport process substantially closer to the ground truth than expected from the nominal error characterising the data, leading to sound generalisation properties. This is demonstrated through an idealized study of the long standing problem of heat flux suppression under conditions relevant for fusion and cosmic plasmas. A simple analysis shows that the result applies beyond those case specific assumptions and that, in particular, the accuracy of the learned representation is controllable through knowledge of the data quality (error properties) and a suitable choice of the dataset size. While the learned representation can be used as a plug-in for numerical modeling purposes, it can also be leveraged with the above error analysis to obtain reliable mathematical expressions describing the transport mechanism and of great theoretical value.
We obtain explicit $p$-Wasserstein distance error bounds between the distribution of the multi-parameter MLE and the multivariate normal distribution. Our general bounds are given for possibly high-dimensional, independent and identically distributed random vectors. Our general bounds are of the optimal $\mathcal{O}(n^{-1/2})$ order. Explicit numerical constants are given when $p\in(1,2]$, and in the case $p>2$ the bounds are explicit up to a constant factor that only depends on $p$. We apply our general bounds to derive Wasserstein distance error bounds for the multivariate normal approximation of the MLE in several settings; these being single-parameter exponential families, the normal distribution under canonical parametrisation, and the multivariate normal distribution under non-canonical parametrisation. In addition, we provide upper bounds with respect to the bounded Wasserstein distance when the MLE is implicitly defined.
We develop a computationally tractable method for estimating the optimal map between two distributions over $\mathbb{R}^d$ with rigorous finite-sample guarantees. Leveraging an entropic version of Brenier's theorem, we show that our estimator -- the barycentric projection of the optimal entropic plan -- is easy to compute using Sinkhorn's algorithm. As a result, unlike current approaches for map estimation, which are slow to evaluate when the dimension or number of samples is large, our approach is parallelizable and extremely efficient even for massive data sets. Under smoothness assumptions on the optimal map, we show that our estimator enjoys comparable statistical performance to other estimators in the literature, but with much lower computational cost. We showcase the efficacy of our proposed estimator through numerical examples. Our proofs are based on a modified duality principle for entropic optimal transport and on a method for approximating optimal entropic plans due to Pal (2019).
We study methods based on reproducing kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process (MRP). We study a regularized form of the kernel least-squares temporal difference (LSTD) estimate; in the population limit of infinite data, it corresponds to the fixed point of a projected Bellman operator defined by the associated reproducing kernel Hilbert space. The estimator itself is obtained by computing the projected fixed point induced by a regularized version of the empirical operator; due to the underlying kernel structure, this reduces to solving a linear system involving kernel matrices. We analyze the error of this estimate in the $L^2(\mu)$-norm, where $\mu$ denotes the stationary distribution of the underlying Markov chain. Our analysis imposes no assumptions on the transition operator of the Markov chain, but rather only conditions on the reward function and population-level kernel LSTD solutions. We use empirical process theory techniques to derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator, as well as the instance-dependent variance of the Bellman residual error. In addition, we prove minimax lower bounds over sub-classes of MRPs, which shows that our rate is optimal in terms of the sample size $n$ and the effective horizon $H = (1 - \gamma)^{-1}$. Whereas existing worst-case theory predicts cubic scaling ($H^3$) in the effective horizon, our theory reveals that there is in fact a much wider range of scalings, depending on the kernel, the stationary distribution, and the variance of the Bellman residual error. Notably, it is only parametric and near-parametric problems that can ever achieve the worst-case cubic scaling.
We present a framework that allows for the non-asymptotic study of the $2$-Wasserstein distance between the invariant distribution of an ergodic stochastic differential equation and the distribution of its numerical approximation in the strongly log-concave case. This allows us to study in a unified way a number of different integrators proposed in the literature for the overdamped and underdamped Langevin dynamics. In addition, we analyse a novel splitting method for the underdamped Langevin dynamics which only requires one gradient evaluation per time step. Under an additional smoothness assumption on a $d$--dimensional strongly log-concave distribution with condition number $\kappa$, the algorithm is shown to produce with an $\mathcal{O}\big(\kappa^{5/4} d^{1/4}\epsilon^{-1/2} \big)$ complexity samples from a distribution that, in Wasserstein distance, is at most $\epsilon>0$ away from the target distribution.
Piecewise deterministic Markov processes (PDMPs) are a class of stochastic processes with applications in several fields of applied mathematics spanning from mathematical modeling of physical phenomena to computational methods. A PDMP is specified by three characteristic quantities: the deterministic motion, the law of the random event times, and the jump kernels. The applicability of PDMPs to real world scenarios is currently limited by the fact that these processes can be simulated only when these three characteristics of the process can be simulated exactly. In order to overcome this problem, we introduce discretisation schemes for PDMPs which make their approximate simulation possible. In particular, we design both first order and higher order schemes that rely on approximations of one or more of the three characteristics. For the proposed approximation schemes we study both pathwise convergence to the continuous PDMP as the step size converges to zero and convergence in law to the invariant measure of the PDMP in the long time limit. Moreover, we apply our theoretical results to several PDMPs that arise from the computational statistics and mathematical biology literature.
Conventional information-theoretic quantities assume access to probability distributions. Estimating such distributions is not trivial. Here, we consider function-based formulations of cross entropy that sidesteps this a priori estimation requirement. We propose three measures of R\'enyi's $\alpha$-cross-entropies in the setting of reproducing-kernel Hilbert spaces. Each measure has its appeals. We prove that we can estimate these measures in an unbiased, non-parametric, and minimax-optimal way. We do this via sample-constructed Gram matrices. This yields matrix-based estimators of R\'enyi's $\alpha$-cross-entropies. These estimators satisfy all of the axioms that R\'enyi established for divergences. Our cross-entropies can thus be used for assessing distributional differences. They are also appropriate for handling high-dimensional distributions, since the convergence rate of our estimator is independent of the sample dimensionality. Python code for implementing these measures can be found at //github.com/isledge/MBRCE
This paper presents new existence, dual representation and approximation results for the information projection in the infinite-dimensional setting for moment inequality models. These results are established under a general specification of the moment inequality model, nesting both conditional and unconditional models, and allowing for an infinite number of such inequalities. An important innovation of the paper is the exhibition of the dual variable as a weak vector-valued integral to formulate an approximation scheme of the $I$-projection's equivalent Fenchel dual problem. In particular, it is shown under suitable assumptions that the dual problem's optimum value can be approximated by the values of finite-dimensional programs, and that, in addition, every accumulation point of a sequence of optimal solutions for the approximating programs is an optimal solution for the dual problem. This paper illustrates the verification of assumptions and the construction of the approximation scheme's parameters for the cases of unconditional and conditional first-order stochastic dominance constraints.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.