We develop a computationally tractable method for estimating the optimal map between two distributions over $\mathbb{R}^d$ with rigorous finite-sample guarantees. Leveraging an entropic version of Brenier's theorem, we show that our estimator -- the barycentric projection of the optimal entropic plan -- is easy to compute using Sinkhorn's algorithm. As a result, unlike current approaches for map estimation, which are slow to evaluate when the dimension or number of samples is large, our approach is parallelizable and extremely efficient even for massive data sets. Under smoothness assumptions on the optimal map, we show that our estimator enjoys comparable statistical performance to other estimators in the literature, but with much lower computational cost. We showcase the efficacy of our proposed estimator through numerical examples. Our proofs are based on a modified duality principle for entropic optimal transport and on a method for approximating optimal entropic plans due to Pal (2019).
We present an algorithm, based on the Differential Dynamic Programming framework, to handle trajectory optimization problems in which the horizon is determined online rather than fixed a priori. This algorithm exhibits exact one-step convergence for linear, quadratic, time-invariant problems and is fast enough for real-time nonlinear model-predictive control. We show derivations for the nonlinear algorithm in the discrete-time case, and apply this algorithm to a variety of nonlinear problems. Finally, we show the efficacy of the optimal-horizon model-predictive control scheme compared to a standard MPC controller, on an obstacle-avoidance problem with planar robots.
Utility-Based Shortfall Risk (UBSR) is a risk metric that is increasingly popular in financial applications, owing to certain desirable properties that it enjoys. We consider the problem of estimating UBSR in a recursive setting, where samples from the underlying loss distribution are available one-at-a-time. We cast the UBSR estimation problem as a root finding problem, and propose stochastic approximation-based estimations schemes. We derive non-asymptotic bounds on the estimation error in the number of samples. We also consider the problem of UBSR optimization within a parameterized class of random variables. We propose a stochastic gradient descent based algorithm for UBSR optimization, and derive non-asymptotic bounds on its convergence.
The fundamental problem in much of physics and quantum chemistry is to optimize a low-degree polynomial in certain anticommuting variables. Being a quantum mechanical problem, in many cases we do not know an efficient classical witness to the optimum, or even to an approximation of the optimum. One prominent exception is when the optimum is described by a so-called "Gaussian state", also called a free fermion state. In this work we are interested in the complexity of this optimization problem when no good Gaussian state exists. Our primary testbed is the Sachdev--Ye--Kitaev (SYK) model of random degree-$q$ polynomials, a model of great current interest in condensed matter physics and string theory, and one which has remarkable properties from a computational complexity standpoint. Among other results, we give an efficient classical certification algorithm for upper-bounding the largest eigenvalue in the $q=4$ SYK model, and an efficient quantum certification algorithm for lower-bounding this largest eigenvalue; both algorithms achieve constant-factor approximations with high probability.
The improvement of pose estimation accuracy is currently the fundamental problem in mobile robots. This study aims to improve the use of observations to enhance accuracy. The selection of feature points affects the accuracy of pose estimation, leading to the question of how the contribution of observation influences the system. Accordingly, the contribution of information to the pose estimation process is analyzed. Moreover, the uncertainty model, sensitivity model, and contribution theory are formulated, providing a method for calculating the contribution of every residual term. The proposed selection method has been theoretically proven capable of achieving a global statistical optimum. The proposed method is tested on artificial data simulations and compared with the KITTI benchmark. The experiments revealed superior results in contrast to ALOAM and MLOAM. The proposed algorithm is implemented in LiDAR odometry and LiDAR Inertial odometry both indoors and outdoors using diverse LiDAR sensors with different scan modes, demonstrating its effectiveness in improving pose estimation accuracy. A new configuration of two laser scan sensors is subsequently inferred. The configuration is valid for three-dimensional pose localization in a prior map and yields results at the centimeter level.
We revisit Min-Mean-Cycle, the classical problem of finding a cycle in a weighted directed graph with minimum mean weight. Despite an extensive algorithmic literature, previous work falls short of a near-linear runtime in the number of edges $m$. We propose an approximation algorithm that, for graphs with polylogarithmic diameter, achieves a near-linear runtime. In particular, this is the first algorithm whose runtime scales in the number of vertices $n$ as $\tilde{O}(n^2)$ for the complete graph. Moreover, unconditionally on the diameter, the algorithm uses only $O(n)$ memory beyond reading the input, making it "memory-optimal". Our approach is based on solving a linear programming relaxation using entropic regularization, which reduces the problem to Matrix Balancing -- \'a la the popular reduction of Optimal Transport to Matrix Scaling. The algorithm is practical and simple to implement.
Controllers for autonomous systems that operate in safety-critical settings must account for stochastic disturbances. Such disturbances are often modelled as process noise, and common assumptions are that the underlying distributions are known and/or Gaussian. In practice, however, these assumptions may be unrealistic and can lead to poor approximations of the true noise distribution. We present a novel planning method that does not rely on any explicit representation of the noise distributions. In particular, we address the problem of computing a controller that provides probabilistic guarantees on safely reaching a target. First, we abstract the continuous system into a discrete-state model that captures noise by probabilistic transitions between states. As a key contribution, we adapt tools from the scenario approach to compute probably approximately correct (PAC) bounds on these transition probabilities, based on a finite number of samples of the noise. We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP). This iMDP is robust against uncertainty in the transition probabilities, and the tightness of the probability intervals can be controlled through the number of samples. We use state-of-the-art verification techniques to provide guarantees on the iMDP, and compute a controller for which these guarantees carry over to the autonomous system. Realistic benchmarks show the practical applicability of our method, even when the iMDP has millions of states or transitions.
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset. Specifically, we are given a set $T$ of $n$ points in $\mathbb{R}^d$ and a parameter $0< \alpha <\frac 1 2$ such that an $\alpha$-fraction of the points in $T$ are i.i.d. samples from a well-behaved distribution $\mathcal{D}$ and the remaining $(1-\alpha)$-fraction are arbitrary. The goal is to output a small list of vectors, at least one of which is close to the mean of $\mathcal{D}$. We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees, with running time $O(n^{1 + \epsilon_0} d)$, for any fixed $\epsilon_0 > 0$. All prior algorithms for this problem had additional polynomial factors in $\frac 1 \alpha$. We leverage this result, together with additional techniques, to obtain the first almost-linear time algorithms for clustering mixtures of $k$ separated well-behaved distributions, nearly-matching the statistical guarantees of spectral methods. Prior clustering algorithms inherently relied on an application of $k$-PCA, thereby incurring runtimes of $\Omega(n d k)$. This marks the first runtime improvement for this basic statistical problem in nearly two decades. The starting point of our approach is a novel and simpler near-linear time robust mean estimation algorithm in the $\alpha \to 1$ regime, based on a one-shot matrix multiplicative weights-inspired potential decrease. We crucially leverage this new algorithmic framework in the context of the iterative multi-filtering technique of Diakonikolas et al. '18, '20, providing a method to simultaneously cluster and downsample points using one-dimensional projections -- thus, bypassing the $k$-PCA subroutines required by prior algorithms.
Optimal transport (OT) naturally arises in a wide range of machine learning applications but may often become the computational bottleneck. Recently, one line of works propose to solve OT approximately by searching the \emph{transport plan} in a low-rank subspace. However, the optimal transport plan is often not low-rank, which tends to yield large approximation errors. For example, when Monge's \emph{transport map} exists, the transport plan is full rank. This paper concerns the computation of the OT distance with adequate accuracy and efficiency. A novel approximation for OT is proposed, in which the transport plan can be decomposed into the sum of a low-rank matrix and a sparse one. We theoretically analyze the approximation error. An augmented Lagrangian method is then designed to efficiently calculate the transport plan.
We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.
Implicit probabilistic models are models defined naturally in terms of a sampling procedure and often induces a likelihood function that cannot be expressed explicitly. We develop a simple method for estimating parameters in implicit models that does not require knowledge of the form of the likelihood function or any derived quantities, but can be shown to be equivalent to maximizing likelihood under some conditions. Our result holds in the non-asymptotic parametric setting, where both the capacity of the model and the number of data examples are finite. We also demonstrate encouraging experimental results.