We study how ambient energy harvesting may be used as an attack vector in the battery-less Internet of Things (IoT). Battery-less IoT devices rely on ambient energy harvesting and are employed in a multitude of applications, including safety-critical ones such as biomedical implants. Due to scarce energy intakes and limited energy buffers, their executions become intermittent, alternating periods of active operation with periods of recharging energy buffers. Through an independent exploratory study and a follow-up systematic analysis, we demonstrate that by exerting limited control on ambient energy one can create situations of livelock, denial of service, and priority inversion, without physical device access. We call these situations energy attacks. Using concepts of approximate intermittent computing and machine learning, we design a technique that can detect energy attacks with 92%+ accuracy, that is, up to 37% better than the baselines, and with up to one fifth of their energy overhead. Crucially, by design, our technique does not cause any additional energy failure compared to the regular intermittent processing. We conclude with directions to inspire defense techniques and a discussion on the feasibility of energy attacks.
Function-as-a-Service (FaaS) is a promising paradigm for applications distributed across the edge-cloud continuum. FaaS functions are stateless by nature, leading to high elasticity and transparent invocation. Supporting stateful applications, however, requires integrating data storage in FaaS, which is not trivial in an edge-cloud environment. We propose Enoki, an architecture for stateful FaaS computing replicated across the edge-cloud continuum. Enoki integrates a replicated key-value store with single-node FaaS systems at edge and cloud nodes in order to provide low-latency local data access for functions without breaking the abstraction of the FaaS programming model. We evaluate Enoki with microbenchmarks on an open-source prototype and demonstrate building a stateful FaaS application with multiple functions distributed over edge and cloud.
The edge computing paradigm helps handle the Internet of Things (IoT) generated data in proximity to its source. Challenges occur in transferring, storing, and processing this rapidly growing amount of data on resource-constrained edge devices. Symbolic Representation (SR) algorithms are promising solutions to reduce the data size by converting actual raw data into symbols. Also, they allow data analytics (e.g., anomaly detection and trend prediction) directly on symbols, benefiting large classes of edge applications. However, existing SR algorithms are centralized in design and work offline with batch data, which is infeasible for real-time cases. We propose SymED - Symbolic Edge Data representation method, i.e., an online, adaptive, and distributed approach for symbolic representation of data on edge. SymED is based on the Adaptive Brownian Bridge-based Aggregation (ABBA), where we assume low-powered IoT devices do initial data compression (senders) and the more robust edge devices do the symbolic conversion (receivers). We evaluate SymED by measuring compression performance, reconstruction accuracy through Dynamic Time Warping (DTW) distance, and computational latency. The results show that SymED is able to (i) reduce the raw data with an average compression rate of 9.5%; (ii) keep a low reconstruction error of 13.25 in the DTW space; (iii) simultaneously provide real-time adaptability for online streaming IoT data at typical latencies of 42ms per symbol, reducing the overall network traffic.
Explainable AI (XAI) is widely viewed as a sine qua non for ever-expanding AI research. A better understanding of the needs of XAI users, as well as human-centered evaluations of explainable models are both a necessity and a challenge. In this paper, we explore how HCI and AI researchers conduct user studies in XAI applications based on a systematic literature review. After identifying and thoroughly analyzing 97core papers with human-based XAI evaluations over the past five years, we categorize them along the measured characteristics of explanatory methods, namely trust, understanding, usability, and human-AI collaboration performance. Our research shows that XAI is spreading more rapidly in certain application domains, such as recommender systems than in others, but that user evaluations are still rather sparse and incorporate hardly any insights from cognitive or social sciences. Based on a comprehensive discussion of best practices, i.e., common models, design choices, and measures in user studies, we propose practical guidelines on designing and conducting user studies for XAI researchers and practitioners. Lastly, this survey also highlights several open research directions, particularly linking psychological science and human-centered XAI.
Deep Learning (DL) is increasingly used in safety-critical applications, raising concerns about its reliability. DL suffers from a well-known problem of lacking robustness, especially when faced with adversarial perturbations known as Adversarial Examples (AEs). Despite recent efforts to detect AEs using advanced attack and testing methods, these approaches often overlook the input distribution and perceptual quality of the perturbations. As a result, the detected AEs may not be relevant in practical applications or may appear unrealistic to human observers. This can waste testing resources on rare AEs that seldom occur during real-world use, limiting improvements in DL model dependability. In this paper, we propose a new robustness testing approach for detecting AEs that considers both the feature level distribution and the pixel level distribution, capturing the perceptual quality of adversarial perturbations. The two considerations are encoded by a novel hierarchical mechanism. First, we select test seeds based on the density of feature level distribution and the vulnerability of adversarial robustness. The vulnerability of test seeds are indicated by the auxiliary information, that are highly correlated with local robustness. Given a test seed, we then develop a novel genetic algorithm based local test case generation method, in which two fitness functions work alternatively to control the perceptual quality of detected AEs. Finally, extensive experiments confirm that our holistic approach considering hierarchical distributions is superior to the state-of-the-arts that either disregard any input distribution or only consider a single (non-hierarchical) distribution, in terms of not only detecting imperceptible AEs but also improving the overall robustness of the DL model under testing.
Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.
Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.