Purpose: This is an attempt to better bridge the gap between the mathematical and the engineering/physical aspects of the topic. We trace the different sources of non-convexification in the context of topology optimization problems starting from domain discretization, passing through penalization for discreteness and effects of filtering methods, and end with a note on continuation methods. Design/Methodology/Approach: Starting from the global optimum of the compliance minimization problem, we employ analytical tools to investigate how intermediate density penalization affects the convexity of the problem, the potential penalization-like effects of various filtering techniques, how continuation methods can be used to approach the global optimum, and how the initial guess has some weight in determining the final optimum. Findings: The non-convexification effects of the penalization of intermediate density elements simply overshadows any other type of non-convexification introduced into the problem, mainly due to its severity and locality. Continuation methods are strongly recommended to overcome the problem of local minima, albeit its step and convergence criteria are left to the user depending on the type of application. Originality/Value: In this article, we present a comprehensive treatment of the sources of non-convexity in density-based topology optimization problems, with a focus on linear elastic compliance minimization. We put special emphasis on the potential penalization-like effects of various filtering techniques through a detailed mathematical treatment.
Given its status as a classic problem and its importance to both theoreticians and practitioners, edit distance provides an excellent lens through which to understand how the theoretical analysis of algorithms impacts practical implementations. From an applied perspective, the goals of theoretical analysis are to predict the empirical performance of an algorithm and to serve as a yardstick to design novel algorithms that perform well in practice. In this paper, we systematically survey the types of theoretical analysis techniques that have been applied to edit distance and evaluate the extent to which each one has achieved these two goals. These techniques include traditional worst-case analysis, worst-case analysis parametrized by edit distance or entropy or compressibility, average-case analysis, semi-random models, and advice-based models. We find that the track record is mixed. On one hand, two algorithms widely used in practice have been born out of theoretical analysis and their empirical performance is captured well by theoretical predictions. On the other hand, all the algorithms developed using theoretical analysis as a yardstick since then have not had any practical relevance. We conclude by discussing the remaining open problems and how they can be tackled.
Due to the high human cost of annotation, it is non-trivial to curate a large-scale medical dataset that is fully labeled for all classes of interest. Instead, it would be convenient to collect multiple small partially labeled datasets from different matching sources, where the medical images may have only been annotated for a subset of classes of interest. This paper offers an empirical understanding of an under-explored problem, namely partially supervised multi-label classification (PSMLC), where a multi-label classifier is trained with only partially labeled medical images. In contrast to the fully supervised counterpart, the partial supervision caused by medical data scarcity has non-trivial negative impacts on the model performance. A potential remedy could be augmenting the partial labels. Though vicinal risk minimization (VRM) has been a promising solution to improve the generalization ability of the model, its application to PSMLC remains an open question. To bridge the methodological gap, we provide the first VRM-based solution to PSMLC. The empirical results also provide insights into future research directions on partially supervised learning under data scarcity.
Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
Existing inferential methods for small area data involve a trade-off between maintaining area-level frequentist coverage rates and improving inferential precision via the incorporation of indirect information. In this article, we propose a method to obtain an area-level prediction region for a future observation which mitigates this trade-off. The proposed method takes a conformal prediction approach in which the conformity measure is the posterior predictive density of a working model that incorporates indirect information. The resulting prediction region has guaranteed frequentist coverage regardless of the working model, and, if the working model assumptions are accurate, the region has minimum expected volume compared to other regions with the same coverage rate. When constructed under a normal working model, we prove such a prediction region is an interval and construct an efficient algorithm to obtain the exact interval. We illustrate the performance of our method through simulation studies and an application to EPA radon survey data.
We show that in pool-based active classification without assumptions on the underlying distribution, if the learner is given the power to abstain from some predictions by paying the price marginally smaller than the average loss $1/2$ of a random guess, exponential savings in the number of label requests are possible whenever they are possible in the corresponding realizable problem. We extend this result to provide a necessary and sufficient condition for exponential savings in pool-based active classification under the model misspecification.
We propose a stochastic conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms. Existing CGM variants for this template either suffer from slow convergence rates, or require carefully increasing the batch size over the course of the algorithm's execution, which leads to computing full gradients. In contrast, the proposed method, equipped with a stochastic average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques. In applications we put special emphasis on problems with a large number of separable constraints. Such problems are prevalent among semidefinite programming (SDP) formulations arising in machine learning and theoretical computer science. We provide numerical experiments on matrix completion, unsupervised clustering, and sparsest-cut SDPs.
Multigrid is a powerful solver for large-scale linear systems arising from discretized partial differential equations. The convergence theory of multigrid methods for symmetric positive definite problems has been well developed over the past decades, while, for nonsymmetric problems, such theory is still not mature. As a foundation for multigrid analysis, two-grid convergence theory plays an important role in motivating multigrid algorithms. Regarding two-grid methods for nonsymmetric problems, most previous works focus on the spectral radius of iteration matrix or rely on convergence measures that are typically difficult to compute in practice. Moreover, the existing results are confined to two-grid methods with exact solution of the coarse-grid system. In this paper, we analyze the convergence of a two-grid method for nonsymmetric positive definite problems (e.g., linear systems arising from the discretizations of convection-diffusion equations). In the case of exact coarse solver, we establish an elegant identity for characterizing two-grid convergence factor, which is measured by a smoother-induced norm. The identity can be conveniently used to derive a class of optimal restriction operators and analyze how the convergence factor is influenced by restriction. More generally, we present some convergence estimates for an inexact variant of the two-grid method, in which both linear and nonlinear coarse solvers are considered.
The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are exceptional and standard eigenvalue solvers, such as the QZ algorithm, tend to yield good accuracy despite the inevitable presence of roundoff error. Recently, Lotz and Noferini quantified this phenomenon by introducing the concept of $\delta$-weak eigenvalue condition numbers. In this work, we consider singular quadratic eigenvalue problems and two popular linearizations. Our results show that a correctly chosen linearization increases $\delta$-weak eigenvalue condition numbers only marginally, justifying the use of these linearizations in numerical solvers also in the singular case. We propose a very simple but often effective algorithm for computing well-conditioned eigenvalues of a singular quadratic eigenvalue problems by adding small random perturbations to the coefficients. We prove that the eigenvalue condition number is, with high probability, a reliable criterion for detecting and excluding spurious eigenvalues created from the singular part.
CP decomposition (CPD) is prevalent in chemometrics, signal processing, data mining and many more fields. While many algorithms have been proposed to compute the CPD, alternating least squares (ALS) remains one of the most widely used algorithm for computing the decomposition. Recent works have introduced the notion of eigenvalues and singular values of a tensor and explored applications of eigenvectors and singular vectors in areas like signal processing, data analytics and in various other fields. We introduce a new formulation for deriving singular values and vectors of a tensor by considering the critical points of a function different from what is used in the previous work. Computing these critical points in an alternating manner motivates an alternating optimization algorithm which corresponds to alternating least squares algorithm in the matrix case. However, for tensors with order greater than equal to $3$, it minimizes an objective function which is different from the commonly used least squares loss. Alternating optimization of this new objective leads to simple updates to the factor matrices with the same asymptotic computational cost as ALS. We show that a subsweep of this algorithm can achieve a superlinear convergence rate for exact CPD with known rank and verify it experimentally. We then view the algorithm as optimizing a Mahalanobis distance with respect to each factor with ground metric dependent on the other factors. This perspective allows us to generalize our approach to interpolate between updates corresponding to the ALS and the new algorithm to manage the tradeoff between stability and fitness of the decomposition. Our experimental results show that for approximating synthetic and real-world tensors, this algorithm and its variants converge to a better conditioned decomposition with comparable and sometimes better fitness as compared to the ALS algorithm.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.