亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pre-trained and frozen LLMs can effectively map simple scene re-arrangement instructions to programs over a robot's visuomotor functions through appropriate few-shot example prompting. To parse open-domain natural language and adapt to a user's idiosyncratic procedures, not known during prompt engineering time, fixed prompts fall short. In this paper, we introduce HELPER, an embodied agent equipped with an external memory of language-program pairs that parses free-form human-robot dialogue into action programs through retrieval-augmented LLM prompting: relevant memories are retrieved based on the current dialogue, instruction, correction or VLM description, and used as in-context prompt examples for LLM querying. The memory is expanded during deployment to include pairs of user's language and action plans, to assist future inferences and personalize them to the user's language and routines. HELPER sets a new state-of-the-art in the TEACh benchmark in both Execution from Dialog History (EDH) and Trajectory from Dialogue (TfD), with 1.7x improvement over the previous SOTA for TfD. Our models, code and video results can be found in our project's website: //helper-agent-llm.github.io.

相關內容

In this paper, we present a unified framework to simulate non-Newtonian behaviors. We combine viscous and elasto-plastic stress into a unified particle solver to achieve various non-Newtonian behaviors ranging from fluid-like to solid-like. Our constitutive model is based on a Generalized Maxwell model, which incorporates viscosity, elasticity and plasticity in one non-linear framework by a unified way. On the one hand, taking advantage of the viscous term, we construct a series of strain-rate dependent models for classical non-Newtonian behaviors such as shear-thickening, shear-thinning, Bingham plastic, etc. On the other hand, benefiting from the elasto-plastic model, we empower our framework with the ability to simulate solid-like non-Newtonian behaviors, i.e., visco-elasticity/plasticity. In addition, we enrich our method with a heat diffusion model to make our method flexible in simulating phase change. Through sufficient experiments, we demonstrate a wide range of non-Newtonian behaviors ranging from viscous fluid to deformable objects. We believe this non-Newtonian model will enhance the realism of physically-based animation, which has great potential for computer graphics.

Classifier-free guidance is a key component for enhancing the performance of conditional generative models across diverse tasks. While it has previously demonstrated remarkable improvements for the sample quality, it has only been exclusively employed for diffusion models. In this paper, we integrate classifier-free guidance into Flow Matching (FM) models, an alternative simulation-free approach that trains Continuous Normalizing Flows (CNFs) based on regressing vector fields. We explore the usage of \emph{Guided Flows} for a variety of downstream applications. We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text-to-speech synthesis, boasting state-of-the-art performance. Notably, we are the first to apply flow models for plan generation in the offline reinforcement learning setting, showcasing a 10x speedup in computation compared to diffusion models while maintaining comparable performance.

We introduce Dream2Real, a robotics framework which integrates vision-language models (VLMs) trained on 2D data into a 3D object rearrangement pipeline. This is achieved by the robot autonomously constructing a 3D representation of the scene, where objects can be rearranged virtually and an image of the resulting arrangement rendered. These renders are evaluated by a VLM, so that the arrangement which best satisfies the user instruction is selected and recreated in the real world with pick-and-place. This enables language-conditioned rearrangement to be performed zero-shot, without needing to collect a training dataset of example arrangements. Results on a series of real-world tasks show that this framework is robust to distractors, controllable by language, capable of understanding complex multi-object relations, and readily applicable to both tabletop and 6-DoF rearrangement tasks.

Fine-tuning a pre-trained model (such as BERT, ALBERT, RoBERTa, T5, GPT, etc.) has proven to be one of the most promising paradigms in recent NLP research. However, numerous recent works indicate that fine-tuning suffers from the instability problem, i.e., tuning the same model under the same setting results in significantly different performance. Many recent works have proposed different methods to solve this problem, but there is no theoretical understanding of why and how these methods work. In this paper, we propose a novel theoretical stability analysis of fine-tuning that focuses on two commonly used settings, namely, full fine-tuning and head tuning. We define the stability under each setting and prove the corresponding stability bounds. The theoretical bounds explain why and how several existing methods can stabilize the fine-tuning procedure. In addition to being able to explain most of the observed empirical discoveries, our proposed theoretical analysis framework can also help in the design of effective and provable methods. Based on our theory, we propose three novel strategies to stabilize the fine-tuning procedure, namely, Maximal Margin Regularizer (MMR), Multi-Head Loss (MHLoss), and Self Unsupervised Re-Training (SURT). We extensively evaluate our proposed approaches on 11 widely used real-world benchmark datasets, as well as hundreds of synthetic classification datasets. The experiment results show that our proposed methods significantly stabilize the fine-tuning procedure and also corroborate our theoretical analysis.

We introduce a pipeline to address anatomical inaccuracies in Stable Diffusion generated hand images. The initial step involves constructing a specialized dataset, focusing on hand anomalies, to train our models effectively. A finetuned detection model is pivotal for precise identification of these anomalies, ensuring targeted correction. Body pose estimation aids in understanding hand orientation and positioning, crucial for accurate anomaly correction. The integration of ControlNet and InstructPix2Pix facilitates sophisticated inpainting and pixel-level transformation, respectively. This dual approach allows for high-fidelity image adjustments. This comprehensive approach ensures the generation of images with anatomically accurate hands, closely resembling real-world appearances. Our experimental results demonstrate the pipeline's efficacy in enhancing hand image realism in Stable Diffusion outputs. We provide an online demo at //fixhand.yiqun.io

We analyze the impact of speaker adaptation in end-to-end automatic speech recognition models based on transformers and wav2vec 2.0 under different noise conditions. By including speaker embeddings obtained from x-vector and ECAPA-TDNN systems, as well as i-vectors, we achieve relative word error rate improvements of up to 16.3% on LibriSpeech and up to 14.5% on Switchboard. We show that the proven method of concatenating speaker vectors to the acoustic features and supplying them as auxiliary model inputs remains a viable option to increase the robustness of end-to-end architectures. The effect on transformer models is stronger, when more noise is added to the input speech. The most substantial benefits for systems based on wav2vec 2.0 are achieved under moderate or no noise conditions. Both x-vectors and ECAPA-TDNN embeddings outperform i-vectors as speaker representations. The optimal embedding size depends on the dataset and also varies with the noise condition.

Federated Learning (FL) represents a growing machine learning (ML) paradigm designed for training models across numerous nodes that retain local datasets, all without directly exchanging the underlying private data with the parameter server (PS). Its increasing popularity is attributed to notable advantages in terms of training deep neural network (DNN) models under privacy aspects and efficient utilization of communication resources. Unfortunately, DNNs suffer from high computational and communication costs, as well as memory consumption in intricate tasks. These factors restrict the applicability of FL algorithms in communication-constrained systems with limited hardware resources. In this paper, we develop a novel algorithm that overcomes these limitations by synergistically combining a pruning-based method with the FL process, resulting in low-dimensional representations of the model with minimal communication cost, dubbed Masked Pruning over FL (MPFL). The algorithm operates by initially distributing weights to the nodes through the PS. Subsequently, each node locally trains its model and computes pruning masks. These low-dimensional masks are then transmitted back to the PS, which generates a consensus pruning mask, broadcasted back to the nodes. This iterative process enhances the robustness and stability of the masked pruning model. The generated mask is used to train the FL model, achieving significant bandwidth savings. We present an extensive experimental study demonstrating the superior performance of MPFL compared to existing methods. Additionally, we have developed an open-source software package for the benefit of researchers and developers in related fields.

This work proposes a unified self-supervised pre-training framework for transferable multi-modal perception representation learning via masked multi-modal reconstruction in Neural Radiance Field (NeRF), namely NeRF-Supervised Masked AutoEncoder (NS-MAE). Specifically, conditioned on certain view directions and locations, multi-modal embeddings extracted from corrupted multi-modal input signals, i.e., Lidar point clouds and images, are rendered into projected multi-modal feature maps via neural rendering. Then, original multi-modal signals serve as reconstruction targets for the rendered multi-modal feature maps to enable self-supervised representation learning. Extensive experiments show that the representation learned via NS-MAE shows promising transferability for diverse multi-modal and single-modal (camera-only and Lidar-only) perception models on diverse 3D perception downstream tasks (3D object detection and BEV map segmentation) with diverse amounts of fine-tuning labeled data. Moreover, we empirically find that NS-MAE enjoys the synergy of both the mechanism of masked autoencoder and neural radiance field. We hope this study can inspire exploration of more general multi-modal representation learning for autonomous agents.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

北京阿比特科技有限公司